Citation: LIU Sha, CAI Yi-xi, FAN Yong-sheng, LI Xiao-hua, WANG Jia-jun. Synergistic catalysis of MCM-41 and HZSM-5 on rape straw pyrolysis[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(10): 1195-1202. shu

Synergistic catalysis of MCM-41 and HZSM-5 on rape straw pyrolysis

  • Corresponding author: CAI Yi-xi, 1301492392@qq.com
  • Received Date: 12 April 2016
    Revised Date: 20 June 2016

Figures(5)

  • The rape straw was taken as raw materials, and the HZSM-5 and MCM-41 catalysts were used and loaded into bed in two layers with different ways (HZSM-5/MCM-41 and MCM-41/HZSM-5) to explore the synergistic catalytic mechanism on the basis of bio-oil quality and catalyst durability. The physical and chemical characteristics of organic phase in purified bio-oil were analyzed, the compositions were analyzed by FT-IR and GC-MS, and the durability of catalysts was analyzed by TG. The results show that compared with the singular catalytic reaction, the liquid yield from synergistic catalytic reaction lowers somewhat and the gas yield increases. The physciochemical properties of organic phase in purified bio-oil increase and the organic phase obtained from MCM-41/HZSM-5 synergistic catalytic reaction has a relatively higher calorific value, 34.31 MJ/kg. The organic phase in refined bio-oil contains a variety of aromatic substances and a small amount of carbonyl substances, the synergistic catalytic reaction can produce more hydrocarbons and less oxygen-contained aromatic substances. The MCM-41/HZSM-5 synergistic catalytic reaction can produce higher levels of hydrocarbons in organic phase of refined bio-oil, which are mainly in single ring aromatics. There are two weight loss peaks for deactivated HZSM-5 molecular sieve and only one weight loss peak for deactivated MCM-41 molecular sieve in the range of 300-800℃, which show that the coke deposited on the MCM-41 catalyst has a single composition and is easy to remove and the synergistic catalytic reaction forms less coke.
  • 加载中
    1. [1]

      XU Ying, WANG Tie-jun, MA Long-long, ZHANG Qi, CHEN Guan-yi. Technology of bio-oil preparation by vacuum pyrolysis of pine straw[J]. Trans Chin Soc Agric Eng, 2013,29(1):196-201.  

    2. [2]

      WU Chuang-zhi, ZHOU Zhao-qiu, YIN Xiu-li, YI Wei-ming. Current status of biomass energy development in China[J]. Trans Chin Soc Agric Mach, 2009,40(1):91-99.  

    3. [3]

      BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass Bioenergy, 2012,38:68-94. doi: 10.1016/j.biombioe.2011.01.048

    4. [4]

      TAN Shun, ZHANG Zhi-jun, SUN Jian-ping, WANG Qing-wen. Recent progress of catalytic pyrolysis of biomass by HZSM-5[J]. Chin J Catal, 2013,34(4):641-650. doi: 10.1016/S1872-2067(12)60531-2

    5. [5]

      COURTNEY A F, TONYA M, YAYING J, MARK C, CZARENA C, SAM A. Bio-oil upgrading over platinum catalysts using in situ generated hydrogen[J]. Appl Catal A:Gen, 2009,358(2):150-156. doi: 10.1016/j.apcata.2009.02.006

    6. [6]

      ZHANG Qi, CHANG Jie, WANG Tie-jun, XU Ying. Progress on research of properties and upgrading of bio-oil[J]. Petrochem Technol, 2006,35(5):493-498.  

    7. [7]

      LIU Rong-hou, HUANG Cai-xia, CAI Jun-meng, DENG Chun-jian. Research progress in the upgrading of bio-oil from biomass pyrolysis[J]. Trans Chin Soc Agric Eng, 2008,24(3):308-308.  

    8. [8]

      LUO Zhong-yang, ZHANG Xiao-dong, ZHOU Jin-song, NI Ming-jiang, CEN Ke-fa. Experimental study on catalytic and thermal cracking of tar from biomass pyrolysis[J]. J Chem Eng Chin Univ, 2004,18(2):162-167.  

    9. [9]

      LI G J, ZHAO R Y, BAI L P. Effects of catalysts on pyrolysis of chlorella[J]. Microporous Mesoporous Mater, 2012,433-440:161-165.

    10. [10]

      ADAM J, ANTONAKOU E, LAPPAS A, STOCKER M, MERETE H N, BOUZGA A. In suit catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials[J]. Microporpus Mesoporous Mater, 2006,96(1/3):93-101.

    11. [11]

      LI H Y, YAN Y J, REN Z W. Online upgrading of organic vapors from the fast pyrolysis of biomass[J]. J Fuel Chem Technol, 2008,36(6):666-671. doi: 10.1016/S1872-5813(09)60002-5

    12. [12]

      WILLIAMS P T, NITTAYA N. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks[J]. Energy, 2000,25(6):493-513. doi: 10.1016/S0360-5442(00)00009-8

    13. [13]

      DIAO Z H, LI W, ZHANG X W, LIU G Z. Catalytic cracking of supercritical n-dodecane over meso-HZSM-5@Al-MCM-41 zeolites[J]. Chem Eng Sci, 2015,135:452-460. doi: 10.1016/j.ces.2014.12.048

    14. [14]

      KÖLDSTRÖM M, KUMAR N, HEIKKILA T, TⅡTTA M, SALMI T, YU D. Transformation of levoglucosan over H-MCM-22 zeolite and H-MCM-41 mesoporous molecular sieve catalysts[J]. Biomass Bioenergy, 2011,35(5):1967-1976. doi: 10.1016/j.biombioe.2011.01.046

    15. [15]

      FAN Yong-sheng, CAI Yi-xi, LI Xiao-hua, ZHAO Wei-dong, YU Ning. Influence of process parameters on bio-oil yield by vacuum pyrolysis[J]. Chem Ind Forest Prod, 2014,34(1):79-85.  

    16. [16]

      FAN Yong-sheng, CAI Yi-xi, LI Xiao-hua, YU Ning, YIN Hai-yun. Catalytic upgrading of pyrolytic vapors from rape straw vacuum pyrolysis[J]. Trans Chin Soc Agric Mach, 2014,45(12):234-240.  

    17. [17]

      FAN Y S, CAI Y X, LI X H, YIN H Y, YU N, ZHANG R X, ZHAO W D. Rape straw as a source of bio-oil via vacuum pyrolysis:Optimization of bio-oil yield using orthogonal design method and characterization of bio-oil[J]. J Anal Appl Pyrolysis, 2014,106:63-70. doi: 10.1016/j.jaap.2013.12.011

    18. [18]

      CORMA A, GRANDE M S, GONZALEZ V A, ORCHILLES A V. Cracking activity and hydrothermal stability of MCM-41 and its comparison with amorphous silica-alumina and a USY zeolite[J]. J Catal, 1996,159(2):375-382. doi: 10.1006/jcat.1996.0100

    19. [19]

      AHO A, KUMAR N, LASHKUL A V, ERANEN K, ZIOLEK M, DECYK M. Catalytic upgrading of woody biomass derived pyrolysis vapours over iron modified zeolites in a dual-fluidized bed reactor[J]. Fuel, 2010,89(8):1992-2000. doi: 10.1016/j.fuel.2010.02.009

    20. [20]

      LI Ting-ting, ZHANG Hui, WU Cai-e, FAN Gong-jian. Extraction optimization and antioxidant activity of glycoprotein from camellia oleifera seed[J]. Trans Chin Soc Agric Mach, 2012,43(4):148-155.  

    21. [21]

      POUYA S R, HODA S, WAN M A W D. Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis:A review[J]. Appl Catal A:Gen, 2014,469:490-511. doi: 10.1016/j.apcata.2013.09.036

    22. [22]

      ILIOPOULOU E F, ANTONAKOU E V, KARAKOULIA S A, VASALOS I A, LAPPAS A A, TRIANTAFYLLIDIS K S. Catalytic conversion of biomass pyrolysis products by mesoporous materials:Effects of steam stability and acidity of Al-MCM-41 catalysts[J]. Chem Eng J, 2007,134(1/3):51-57.

    23. [23]

      YIN Hai-yun, LI Xiao-hua, ZHANG Rong-xian, FAN Yong-sheng, YU Ning, CAI Yi-xi. Online catalytic cracking of bio-oil over HZSM-5 zeolite and analysis of catalyst deactivation[J]. J Fuel Chem Technol, 2014,42(9):1077-1086.  

    24. [24]

      GUO Chun-lei, FANG Xiang-chen, JIA Li-ming, LIU Quan-jie. Study on the deactivation of Pt/HZSM-5 zeolitic reforming catalyst by coke deposition[J]. Petrol Proc Petrochem, 2012,43(4):25-29.

    25. [25]

      LI Wang-liang, LIU Yun-qi, LIU Chun-ying, LIU Chen-guang. Hydrogenation properties of Mo-Ni-P catalyst on MCM-41 supported[J]. Acta Pet Sin (Pet Process Sect), 2004,20(2):69-74.  

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Yuan Zhuang Wenhui Li Jie Li . Curriculum Reform of “Chemical Composition Analysis of Materials” under Background of First-Class Discipline Construction. University Chemistry, 2025, 40(5): 283-290. doi: 10.12461/PKU.DXHX202407070

    4. [4]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    5. [5]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    6. [6]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    8. [8]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    9. [9]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    10. [10]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    11. [11]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    12. [12]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    13. [13]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    16. [16]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    17. [17]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    20. [20]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

Metrics
  • PDF Downloads(1)
  • Abstract views(733)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return