Citation: YAN Ao, ZHANG Yue, WANG Chun-bo, BAI Tao, ZHAO Bin. Influence of O2 on the formation of As2O3 by homogeneous reaction with As and AsO in the coal-fired flue gas[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(1): 11-17. shu

Influence of O2 on the formation of As2O3 by homogeneous reaction with As and AsO in the coal-fired flue gas

  • Corresponding author: ZHANG Yue, zhang.yue@ncepu.edu.cn
  • Received Date: 15 October 2019
    Revised Date: 21 November 2019

    Fund Project: Basic Research Business Fees of Central Colleges and Universities 2018ZD03The project was supported by National Natural Science Foundation of China (51906070), Key Research and Development (R & D) Projects of Shanxi Province (201803D31027), Basic Research Business Fees of Central Colleges and Universities (2018ZD03, 2019MS093), Research on Key Basic Problems of Efficient Cleaning and Synergy Utilization of Inferior Coal Power Generation (LLEUTS-201702)Research on Key Basic Problems of Efficient Cleaning and Synergy Utilization of Inferior Coal Power Generation LLEUTS-201702Basic Research Business Fees of Central Colleges and Universities 2019MS093National Natural Science Foundation of China 51906070Key Research and Development (R & D) Projects of Shanxi Province 201803D31027

Figures(7)

  • The reaction mechanism for the formation of As2O3 by the homogeneous reaction of O2 with As and AsO in the coal-fired flue gas was investigated by the quantum chemical density functional theory. The structure and energy of each reactant, intermediate, transition state and product were determined and the thermodynamic and kinetic analysis was carried out to explore the reaction mechanism. The results show that the maximum reaction energy barriers for the formation of As2O3 from As and AsO are 32.9 and 157.2 kJ/mol, respectively. The forward and reverse reaction coefficients all increase with an increase of the reaction temperature in the range of 500-1900 K, although the influence extent of temperature varies with different reactions. For the oxidation of As, the equilibrium constants of two reactions are always greater than 105, indicating that the oxidation of As can be carried out completely and regarded as an irreversible reaction. In contrast, for the oxidation of AsO, the equilibrium constants are always less than 105, indicating that the oxidation of AsO is an incomplete reaction. The equilibrium constant of the As2O3(D3H) configuration is extremely low; however, the formation of the As2O3(GAUCHE) configuration is a spontaneous process.
  • 加载中
    1. [1]

      WANG C, LIU H, ZHANG Y, ZOU C, ANTHONY E J. Review of arsenic behavior during coal combustion:Volatilization, transformation, emission and removal technologies[J]. Prog Energy Combust Sci, 2018,68:1-28. doi: 10.1016/j.pecs.2018.04.001

    2. [2]

      ZHOU Wen-ying. Zhou Sheng-xian stressed at the video work conference on the "Twelfth Five-Year Plan" for comprehensive prevention and control of heavy metal pollution, resolutely cracking down on heavy metal pollution prevention and control, and effectively safeguarding the interests of the people and social stability[J]. Environ Protect, 2011(4):12-13.  

    3. [3]

      Ministry of Environmental Protection. Arsenic pollution prevention and control technology policy[EB/OL]. http://www.mee.gov.cn/gkml/hbb/bgg/201512/t20151228_320552.htm, 2019-10-07.

    4. [4]

      Ministry of Ecology and Environment. National Health and Wellness Committee on the publication of the Poisonous and Harmful Air Pollutants List (2018)[EB/OL]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/201901/t20190131_691779.html, 2019-01-25.

    5. [5]

      SHEN F, LIU J, ZHANG Z, DAI J. On-line analysis and kinetic behavior of arsenic release during coal combustion and pyrolysis[J]. Environment Sci Technol, 2015,49(22):13716-13723. doi: 10.1021/acs.est.5b03626

    6. [6]

      WINTER R M, MALLEPALLI R R, HELLEM K P, SZYDLO S W. Determination of As, Cd, Cr, and Pb species formed in a combustion environment[J]. Combust Sci Technol, 1994,101(1/6):45-58.  

    7. [7]

      GERMANI M S, ZOLLER W H. Vapor-phase concentrations of arsenic, selenium, bromine, iodine, and mercury in the stack of a coal-fired power plant[J]. Environ Sci Technol, 1988,22(9):1079-1085. doi: 10.1021/es00174a013

    8. [8]

      HIRSCH M E, STERLING R O, HUGGINS F E, HELBLE J J. Speciation of combustion-derived particulate phase arsenic[J]. Environ Eng Sci, 2000,17(6):315-327. doi: 10.1089/ees.2000.17.315

    9. [9]

      CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel, 2009,88(3):539-546. doi: 10.1016/j.fuel.2008.09.028

    10. [10]

      LIU Ying-hui, ZHENG Chu-guang, YOU Xiao-qing, GUO Xin. Interaction between most volatile toxic trace elements during coal combustion[J]. J Combust Sci Technol, 2001,7(4):243-247. doi: 10.3321/j.issn:1006-8740.2001.04.007

    11. [11]

      LIU Hui-min, WANG Chun-bo, HUANG Xing-zhi, ZHANG Yue, SUN Xin. Volatilization of arsenic in coal during oxy-fuel combustion[J]. CIESC J, 2015,66(12):5079-5087.  

    12. [12]

      DU X, TANG J, GAO X, CHEN Y, RAN J, ZHANG L. Molecular transformations of arsenic species in the flue gas of typical power plants:A density functional theory study[J]. Energy Fuels, 2016,30(5):4209-4214. doi: 10.1021/acs.energyfuels.5b03029

    13. [13]

      LIU Jing, ZHENG Chu-guang, QIU Jian-rong. Studies on quantum chemistry calculation method of mercury reactions in combustion flue gas[J]. J Eng Thermophys, 2007,V28(3):519-521. doi: 10.3321/j.issn:0253-231X.2007.03.050

    14. [14]

      AWUAH J B, DZADE N Y, TIA R, ADEI E, KWAKYE-AWUAH B, CATLOW C R A. Density functional theory study of arsenic immobilization by Al(Ⅲ)-modified zeolite clinoptilolite[J]. Phys Chem Chem Phys, 2016,18(16):11297-11305. doi: 10.1039/C6CP00190D

    15. [15]

      ZHANG H, LIU J, SHEN J, JIANG X. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion[J]. Energy, 2015,82:312-321. doi: 10.1016/j.energy.2015.01.040

    16. [16]

      ALI M A, RAJAKUMAR B. Thermodynamic and kinetic studies of hydroxyl radical reaction with bromine oxide using density functional theory[J]. Comput Theor Chem, 2011,964(1/3):283-290.  

    17. [17]

      MONAHAN-PENDERGAST M T, PRZYBYLEK M, LINDBLAD M, WILCOX J. Theoretical predictions of arsenic and selenium species under atmospheric conditions[J]. Atmos Environ, 2008,42(10):2349-2357. doi: 10.1016/j.atmosenv.2007.12.028

    18. [18]

      HUBER K, HERZBERG G. Constants of diatomic molecules in NIST chemistry webbook, NIST standard reference database number 69, ed[J]. PJ Linstrom and WG Mallard, 2001.

    19. [19]

      EVENSON K M, WELLS J S, RADFORD H E. Infrared resonance of oh with the H2O laser:A Galactic maser pump?[J]. Phys Rev Lett, 1970,25(4):199-202. doi: 10.1103/PhysRevLett.25.199

    20. [20]

      MIZUSHIMA M A. Molecular parameters of OH free radical[J]. Phys Rev A, 1972,5(1):143-157. doi: 10.1103/PhysRevA.5.143

    21. [21]

      MONAHAN-PENDERGAST M T, PRZYBYLEK M, LINDBLAD M, WILCOX J. Theoretical predictions of arsenic and selenium species under atmospheric conditions[J]. Atmos Environ, 2008,42(10):2349-2357. doi: 10.1016/j.atmosenv.2007.12.028

    22. [22]

      WANG Quan-hai, QIU Jian-rong, WEN Cun, KONG Fan-hai, XIONG Quan-jun, WU Hui. A experimental and simulative study on the morphological transformation of the trace element under oxygen-combustion atmosphere[J]. J Eng Thermophys, 2006,27(s2):199-202.  

    23. [23]

      TANG Ji-yun. The existing form of arsenic species in coal-fired flue gas and its adsorption by zeolite[D]. Chongqing: Chongqing University, 2017. 

    24. [24]

      LIU Jing, WANG Man-hui, ZHENG Chu-guang, XU Ming-hou, LI Lai-cai, XU Jie-ying. Reaction mechanism of mercury and gases during coal combustion[J]. J Eng Thermophys, 2003,V24(1):161-164. doi: 10.3321/j.issn:0253-231X.2003.01.049

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    7. [7]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    8. [8]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    9. [9]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    10. [10]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    11. [11]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    12. [12]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    13. [13]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    14. [14]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    17. [17]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    18. [18]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    19. [19]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    20. [20]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

Metrics
  • PDF Downloads(7)
  • Abstract views(1896)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return