Influence of O2 on the formation of As2O3 by homogeneous reaction with As and AsO in the coal-fired flue gas
- Corresponding author: ZHANG Yue, zhang.yue@ncepu.edu.cn
Citation:
YAN Ao, ZHANG Yue, WANG Chun-bo, BAI Tao, ZHAO Bin. Influence of O2 on the formation of As2O3 by homogeneous reaction with As and AsO in the coal-fired flue gas[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(1): 11-17.
WANG C, LIU H, ZHANG Y, ZOU C, ANTHONY E J. Review of arsenic behavior during coal combustion:Volatilization, transformation, emission and removal technologies[J]. Prog Energy Combust Sci, 2018,68:1-28. doi: 10.1016/j.pecs.2018.04.001
ZHOU Wen-ying. Zhou Sheng-xian stressed at the video work conference on the "Twelfth Five-Year Plan" for comprehensive prevention and control of heavy metal pollution, resolutely cracking down on heavy metal pollution prevention and control, and effectively safeguarding the interests of the people and social stability[J]. Environ Protect, 2011(4):12-13.
Ministry of Environmental Protection. Arsenic pollution prevention and control technology policy[EB/OL]. http://www.mee.gov.cn/gkml/hbb/bgg/201512/t20151228_320552.htm, 2019-10-07.
Ministry of Ecology and Environment. National Health and Wellness Committee on the publication of the Poisonous and Harmful Air Pollutants List (2018)[EB/OL]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/201901/t20190131_691779.html, 2019-01-25.
SHEN F, LIU J, ZHANG Z, DAI J. On-line analysis and kinetic behavior of arsenic release during coal combustion and pyrolysis[J]. Environment Sci Technol, 2015,49(22):13716-13723. doi: 10.1021/acs.est.5b03626
WINTER R M, MALLEPALLI R R, HELLEM K P, SZYDLO S W. Determination of As, Cd, Cr, and Pb species formed in a combustion environment[J]. Combust Sci Technol, 1994,101(1/6):45-58.
GERMANI M S, ZOLLER W H. Vapor-phase concentrations of arsenic, selenium, bromine, iodine, and mercury in the stack of a coal-fired power plant[J]. Environ Sci Technol, 1988,22(9):1079-1085. doi: 10.1021/es00174a013
HIRSCH M E, STERLING R O, HUGGINS F E, HELBLE J J. Speciation of combustion-derived particulate phase arsenic[J]. Environ Eng Sci, 2000,17(6):315-327. doi: 10.1089/ees.2000.17.315
CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel, 2009,88(3):539-546. doi: 10.1016/j.fuel.2008.09.028
LIU Ying-hui, ZHENG Chu-guang, YOU Xiao-qing, GUO Xin. Interaction between most volatile toxic trace elements during coal combustion[J]. J Combust Sci Technol, 2001,7(4):243-247. doi: 10.3321/j.issn:1006-8740.2001.04.007
LIU Hui-min, WANG Chun-bo, HUANG Xing-zhi, ZHANG Yue, SUN Xin. Volatilization of arsenic in coal during oxy-fuel combustion[J]. CIESC J, 2015,66(12):5079-5087.
DU X, TANG J, GAO X, CHEN Y, RAN J, ZHANG L. Molecular transformations of arsenic species in the flue gas of typical power plants:A density functional theory study[J]. Energy Fuels, 2016,30(5):4209-4214. doi: 10.1021/acs.energyfuels.5b03029
LIU Jing, ZHENG Chu-guang, QIU Jian-rong. Studies on quantum chemistry calculation method of mercury reactions in combustion flue gas[J]. J Eng Thermophys, 2007,V28(3):519-521. doi: 10.3321/j.issn:0253-231X.2007.03.050
AWUAH J B, DZADE N Y, TIA R, ADEI E, KWAKYE-AWUAH B, CATLOW C R A. Density functional theory study of arsenic immobilization by Al(Ⅲ)-modified zeolite clinoptilolite[J]. Phys Chem Chem Phys, 2016,18(16):11297-11305. doi: 10.1039/C6CP00190D
ZHANG H, LIU J, SHEN J, JIANG X. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion[J]. Energy, 2015,82:312-321. doi: 10.1016/j.energy.2015.01.040
ALI M A, RAJAKUMAR B. Thermodynamic and kinetic studies of hydroxyl radical reaction with bromine oxide using density functional theory[J]. Comput Theor Chem, 2011,964(1/3):283-290.
MONAHAN-PENDERGAST M T, PRZYBYLEK M, LINDBLAD M, WILCOX J. Theoretical predictions of arsenic and selenium species under atmospheric conditions[J]. Atmos Environ, 2008,42(10):2349-2357. doi: 10.1016/j.atmosenv.2007.12.028
HUBER K, HERZBERG G. Constants of diatomic molecules in NIST chemistry webbook, NIST standard reference database number 69, ed[J]. PJ Linstrom and WG Mallard, 2001.
EVENSON K M, WELLS J S, RADFORD H E. Infrared resonance of oh with the H2O laser:A Galactic maser pump?[J]. Phys Rev Lett, 1970,25(4):199-202. doi: 10.1103/PhysRevLett.25.199
MIZUSHIMA M A. Molecular parameters of OH free radical[J]. Phys Rev A, 1972,5(1):143-157. doi: 10.1103/PhysRevA.5.143
MONAHAN-PENDERGAST M T, PRZYBYLEK M, LINDBLAD M, WILCOX J. Theoretical predictions of arsenic and selenium species under atmospheric conditions[J]. Atmos Environ, 2008,42(10):2349-2357. doi: 10.1016/j.atmosenv.2007.12.028
WANG Quan-hai, QIU Jian-rong, WEN Cun, KONG Fan-hai, XIONG Quan-jun, WU Hui. A experimental and simulative study on the morphological transformation of the trace element under oxygen-combustion atmosphere[J]. J Eng Thermophys, 2006,27(s2):199-202.
TANG Ji-yun. The existing form of arsenic species in coal-fired flue gas and its adsorption by zeolite[D]. Chongqing: Chongqing University, 2017.
LIU Jing, WANG Man-hui, ZHENG Chu-guang, XU Ming-hou, LI Lai-cai, XU Jie-ying. Reaction mechanism of mercury and gases during coal combustion[J]. J Eng Thermophys, 2003,V24(1):161-164. doi: 10.3321/j.issn:0253-231X.2003.01.049
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074