Citation: ZHANG Chao-feng, ZHANG Jing, ZHANG Hao-yu, HUANG Shuang-ping, LI Rui-feng. Synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxane catalyzed by ionic liquids encapsulated in caged mesoporous KIT-5 material[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(4): 505-512. shu

Synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxane catalyzed by ionic liquids encapsulated in caged mesoporous KIT-5 material

  • Corresponding author: ZHANG Chao-feng, zhangchaofeng@tyut.edu.cn
  • Received Date: 20 December 2019
    Revised Date: 2 March 2020

    Fund Project: the Natural Science Foundation of Shanxi Province 201801D121062The project was supported by the Natural Science Foundation of Shanxi Province (201801D121062), the Shanxi Scholarship Council of China (2017-037) and the Foundation of Taiyuan University of Technology (2016MS03)the Foundation of Taiyuan University of Technology 2016MS03the Shanxi Scholarship Council of China 2017-037

Figures(9)

  • Four kinds of supported ionic liquid catalysts were prepared by encapsulation of ionic liquids within the nanocage of KIT-5 and were used in the synthesis of polyoxymethylene dimethyl ether (PODEn) from dimethoxymethane and trioxane; the effects of conditional parameters on the conversion of trioxane and the selectivity to targeted PODE3-5 were systematically investigated. The results show that the optimum reaction parameters for the synthesis of polyoxymethylene dimethyl ether were: reaction time of 2 h, 100 ℃, dimethoxymethane to trioxane molar ratio of 1.5, and catalyst content of 3%. Under the optimum conditions, the encapsulated catalysts are efficient in the synthesis of polyoxymethylene dimethyl ether, with a similar catalytic activity to the homogeneous counterparts. Moreover, the encapsulated catalysts can be reused several times without remarkable loss of activity and product selectivity, which makes it a promising catalyst for practical applications.
  • 加载中
    1. [1]

      DENG X D, CAO Z B, LI X P, HAN D Y, ZHAO R X, LI Y. The synthesis of polyoxymethylene dimethyl ethers for new diesel blending component[J]. Met Org Nano-Met Chem, 2015,46(12):1842-1847.  

    2. [2]

      BARANOWSKI C J, BAHMANPOUR A M, KRÖCHER O. Catalytic synthesis of polyoxymethylene dimethyl ethers (OME):A review[J]. Appl Catal B:Environ, 2017,217:407-420. doi: 10.1016/j.apcatb.2017.06.007

    3. [3]

      BOYD R H. Some physical properties of polyoxymethylene dimethyl ethers[J]. J Polym Sci, 1961,50(153):133-141. doi: 10.1002/pol.1961.1205015316

    4. [4]

      XUE Z Z, SHANG H Y, ZHANG Z L, XIONG C H, LU C B, AN G J. Efficient synthesis of polyoxymethylene dimethyl ethers on Al-SBA-15 catalysts with different Si/Al ratios and pore sizes[J]. Energy Fuels, 2017,31(1):279-286.  

    5. [5]

      ZHENG Yan-yan, TANG Qiang, WANG Tie-feng, WANG Jin-fu. Progress and prospect of polyoxymethylene dimethyl ethers[J]. Chem Ind Eng Prog, 2016,35(8):2412-2419.  

    6. [6]

      ZHAO Y P, XU Z, CHEN H, FU Y C, SHEN J Y. Mechanism of chain propagation for the synthesis of polyoxymethylene dimethyl ethers[J]. J Energy Chem, 2013,22(6):833-836. doi: 10.1016/S2095-4956(14)60261-8

    7. [7]

      WANG L P, ZHOU S S, LI P, LI P Z, LI Q S, YU Y M. Measurement and thermodynamic models for ternary liquid-liquid equilibrium systems {water+polyoxymethylene dimethyl ethers+4-methyl-2-pentanol} at different temperatures[J]. J Chem Eng Data, 2018,63(8):3074-3082. doi: 10.1021/acs.jced.8b00323

    8. [8]

      STROEFER E, HASSE H, BLAGOV S. Method for producing polyoxymethylene dimethyl ethers from methanol and formaldehyde: US, 7671240[P]. 2010-03-02.

    9. [9]

      LIU F, WANG T F, ZHENG Y Y, WANG J F. Synergistic effect of Brønsted and Lewis acid sites for the synthesis of polyoxymethylene dimethyl ethers over highly efficient SO42-/TiO2 catalysts[J]. J Catal, 2017,355:17-25. doi: 10.1016/j.jcat.2017.08.014

    10. [10]

      ZHANG J Q, LIU D H. Preparation of a hydrophobic-hydrophilic adjustable catalyst surface for the controlled synthesis of polyoxymethylene dimethyl ethers:A potential replacement of diesel fuel[J]. Int J Energy Res, 2017,42(3):1237-1246.

    11. [11]

      WANG Yan, SHI Lei, FAN Jia-qi, CHEN Fei, YAO Jie, XU Guang-wen. High-efficiency catalytic synthesis of polyoxymethoxy dimethylether from sulfolane-treated sulfonic acid resin[J]. CIESC J, 2019,70(1):116-127.  

    12. [12]

      ZHOU Lin, LI Guo-bin, LI Xiao-juan, ZHU Jiang-lin, LIU Chao, CHEN Li-yu. Preparation of anionically modified MCM-22 zeolites and application in catalytic synthesis of polyoxymethylene dimethyl ether[J]. Petrochem Technol, 2019,48(6):556-562. doi: 10.3969/j.issn.1000-8144.2019.06.005

    13. [13]

      LI H J, SONG H L, CHEN L W, XIA C G. Designed SO42-/Fe2O3-SiO2 solid acids for polyoxymethylene dimethyl ethers synthesis:the acid sites control and reaction pathways[J]. Appl Catal B:Environ, 2014,165:466-476.

    14. [14]

      CHEN Jing, TANG Zhong-hua, XIA Chun-gu, ZHANG Xin-zhi, LI Zhen. A methode to synthesize polyoxymethylene dimethyl ethers: CN, 101182367A[P]. 2008-05-21.

    15. [15]

      WU Q, WANG M, HAO Y, LI H S, ZHAO Y, JIAO Q Z. Synthesis of polyoxymethylene dimethyl ethers catalyzed by Brønsted acid ionic liquids with alkanesulfonic acid groups[J]. Ind Eng Chem Res, 2014,53(42):16254-16260. doi: 10.1021/ie502409t

    16. [16]

      YANG Z Y, HU Y F, MA W T, QI J G, ZHANG X M. Synthesis of polyoxymethylene dimethyl ethers catalyzed by the pyrrolidinonium based ionic liquids[J]. Chem Eng Technol, 2017,40(10):1784-1791. doi: 10.1002/ceat.201600633

    17. [17]

      LI H, BHADURY P S, SONG B A, YANG S. Immobilized functional ionic liquids:Efficient, green, and reusable catalysts[J]. RSC Adv, 2012,2(33):12525-12551. doi: 10.1039/c2ra21310a

    18. [18]

      ZHANG Chao-feng, ZHANG Hai-xin, CHEN Shu-wei, LI Rui-feng. Immobilization of N-(3-Sulfopropyl)pyridinium methanesulfonate ionic liquid and its catalytic performance in the synthesis of polyoxymethylene dimethyl ethers[J]. J Fuel Chem Technol, 2014,42(5):609-615.  

    19. [19]

      ZHANG Chao-feng, LI jing, CHEN Shu-wei, ZHANG Hai-xin, ZHU Zhi-hong, WANG Jian-zhong, LI Rui-feng. Method for preparing polyoxymethylene dimethyl ethers by using molecular sieve load of ionic liquids as catalyst: CN, 103381372B[P]. 2015-08-19.

    20. [20]

      ZHANG Chao-feng, XING Jun-de, LIU Kang-jun, ZHU Zhi-hong, WANG Jian-zhong, LI Rui-feng. Method for preparing polyoxymethylene dimethyl ethers by using magnetic nanometer imidazole ionic liquids as catalyst: CN, 103381373B[P]. 2016-01-20.

    21. [21]

      DEKA J R, LIN Y H, KAO H M. Ordered cubic mesoporous silica KIT-5 functionalized with carboxylic acid groups for dye removal[J]. RSC Adv, 2014,4(90):49061-49069. doi: 10.1039/C4RA08819K

    22. [22]

      RAMANATHAN A, MAHESWARI R, SUBRAMANIAM B. Facile styrene epoxidation with H2O2 over novel niobium containing cage type mesoporous silicate, Nb-KIT-5[J]. Top Catal, 2015,58(4/6):314-324.  

    23. [23]

      CHERMAHINI A N, HAFIZI H, ANDISHEH N, SARAJI M, SHAHVAR A. The catalytic effect of Al-KIT-5 and KIT-5-SO3H on the conversion of fructose to 5-hydroxymethylfurfural[J]. Res Chem Intermed, 2017,43(11):5507-5521.

    24. [24]

      KLEITZ F, LIU D, ANILKUMAR G M, PARK I-S, SOLOVYOV L A, SHMAKOV A N, RYOO R. Large cage face-centered-cubic Fm3m mesoporous silica:Synthesis and structure[J]. J Phys Chem B, 2003,107(51):14296-14300. doi: 10.1021/jp036136b

    25. [25]

      LI Yu-ge, CAO Zu-bin, LI Xiu-ping, HAN Dong-yun, ZHAO Rong-xiang, DENG Xiao-dan, LI Dan-dong. Calculate the content of polyoxymethylene dimethyl ethers with the effective carbon numbers-internal standard method[J]. Appl Chem Ind, 2013,42(9):1729-1733.  

    26. [26]

      WU C Y, HSU Y T, YANG C M. Structural modulation of cage-like mesoporous KIT-5 silica by post-synthesis treatments with ammonia and/or sulfuric acid[J]. Microporous Mesoporous Mater, 2009,117:249-256. doi: 10.1016/j.micromeso.2008.06.027

    27. [27]

      KALBASI R J, MOSADDEGH N. Synthesis and characterization of Pd-poly (N-vinyl-2-pyrrolidone)/KIT-5 nanocomposite as a polymer-inorganic hybrid catalyst for the Suzuki-Miyaura cross-coupling reaction[J]. J Solid State Chem, 2011,184(11):3095-3103. doi: 10.1016/j.jssc.2011.09.020

    28. [28]

      MIRSAFAEI R, HERAVI M M, AHMADI S, MOSLEMIN M H, HOSSEINNEJAD T. In situ prepared copper nanoparticles on modified KIT-5 as an efficient recyclable catalyst and its applications in click reactions in water[J]. J Mol Catal A:Chem, 2015,402:100-108. doi: 10.1016/j.molcata.2015.03.006

    29. [29]

      WU Y J, LI Z, XIA C G. Silica-gel-supported dual acidic ionic liquids as efficient catalysts for the synthesis of polyoxymethylene dimethyl ethers[J]. Ind Eng Chem Res, 2016,55(7):1859-1865. doi: 10.1021/acs.iecr.5b04177

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    4. [4]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    5. [5]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    10. [10]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    11. [11]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

Metrics
  • PDF Downloads(9)
  • Abstract views(820)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return