Citation: MAO Yan-hong, LIU Dong-mei, WANG Hai-yan, WANG Yu-jia. Study on the performance of alkali acid modified ZSM-5 catalysts for thiophene alkylation reaction[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(12): 1456-1466. shu

Study on the performance of alkali acid modified ZSM-5 catalysts for thiophene alkylation reaction

  • Corresponding author: LIU Dong-mei, ldmwain1234@126.com
  • Received Date: 3 June 2017
    Revised Date: 22 September 2017

    Fund Project: Liaoning Natural Science Foundation of China 201202126Doctoral Start-up Funding 1100130210The project was supported by Liaoning Natural Science Foundation of China (201202126) and Doctoral Start-up Funding (1100130210)

Figures(6)

  • HZSM-5 zeolites with SiO2/Al2O3 molar ratio of 50 as the raw material were treated by a certain concentration of NaOH and then impregnated with citric acid solution to prepare microporous and mesoporous hierarchical HZSM-5 catalyst. The catalytic performance of the prepared catalysts for thiophene alkylation reaction was investigated using simulated oil. The results show that the residual impurities in the pores after alkali treatment can be eliminated by acid washing with citric acid solution. When the concentration of the citric acid solution is 0.5 mol/L, the HZ(AC-0.5) catalyst has the appropriate pore size and acidity, so the conversion of thiophene alkylation is the highest, which is up to 95.6%. The performance of thiophene alkylation reaction was also investigated by respectively using dibenzothiophene thiophene derivatives as model compounds, olefin isoprene as model compounds, aromatic benzene as model compound on the HZ (AC-0.5) catalyst. And then we analyzed the influence of different components in the simulated oil on the conversion and selectivity of thiophene alkylation reaction. It has been demonstrated that the optimum reaction temperature of thiophene alkylation reaction is 120℃. At the optimum temperature, the conversion of benothiophene alkylation is higher than that of thiophene alkylation. The conversion of thiophene will be increased when the olefin isoprene is used as model compound. The conversion of thiophene will be decreased when benzene is used as aromatic model compound.
  • 加载中
    1. [1]

      LIU Ji-hua, ZHAO Le-ping, FANG Xiang-chen, SONG Yong-yi. Development and commercial application of selective hydrodesulfurization technology for FCC gasoline[J]. Petro Ref Eng, 2007,37(7):4-7.  

    2. [2]

      MA Jian, LIU Dong-mei, WANG Hai-yan, ZHAO Wei-lin. Progress in alkylation removal of thiophene sulfur from FCC gasoline[J]. Modern Chem Ind, 2013(9):1288-1290.  

    3. [3]

      GISLASONL J. Phillips sulfur-removal processne nears commercialization[J]. Oil Gas J, 2001,99(47):72-76.  

    4. [4]

      LUO Guo-hua, XU Xin, TONG Ze-min. Study on alkylation desulfurization of thiophene and olefin by molecular sieve catalyst[J]. Chem React Eng Technol, 2005,21(2):133-137.  

    5. [5]

      ZHAO Cen, LIU Dong-mei, WEI Min, SUN Zhi-yan, WANG Hai-yan. Preparation and catalytic performance of ZSM-5 molecular sieve with hierarchical pore[J]. J Fuel Chem Technol, 2013,41(10):1256-1261.  

    6. [6]

      SHI Rong-hui, PAN Rong, WU Li-hong, ZHANG Ran-ran. Progress in alkylation of thiophene with sulfur by solid acid catalyst[J]. Modern Chem Ind, 2014,34(9):32-35.  

    7. [7]

      LUO Guo-hua, XU Xin, YANG Chun-yu, TONG Ze-min, PENG Shao-yi. Study on alkylation of thiophene with olefins by macroporous resin supported AlCl3[J]. Chin J Process Eng, 2003,3(1):18-23.  

    8. [8]

      JIANG Lei, ZHANG Zhan-zhu, MAO Jun-yi, QU Hong-liang, WU Mei. Alkylation Desulfurization of FCC gasoline with modified sulfonic acid resin catalyst[J]. Acta Pet Sin(Pet Process Sect), 2006,22(1):22-26.  

    9. [9]

      OGURA M, SHINOMIYA S Y, TATENO J, NARA Y, NOMURA M, KIKUCHI E, MATSUKATA M. Alkali-treatment technique—new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites[J]. Appl Catal A: Gen, 2001,219(1/2):33-43.  

    10. [10]

      SONG Yu-ji. Study on preparation, modification and catalytic properties of ZSM-5 mesoporous zeolite with large mesoporous pores by carbon soft template method[D]. Beijing: University of Chinese Academy of Sciences, 2013. 

    11. [11]

      DIAO Zhen heng. Synthesis of multi hole HZSM-5 zeolite and its catalytic performance for supercritical catalytic cracking[D]. Tianjin: Tianjin University, 2015. 

    12. [12]

      LU Lu, ZHANG Hui-zhen, ZHU Xue-dong. Synthesis of multi hole ZSM-5 zeolite and alkylation of benzene and methanol[J]. Acta Pet Sin(Pet Process Sect), 2012,28(s1):111-115.  

    13. [13]

      MA Jian, LIU Dong-mei, WEI Min, WANG Hai-yan, WANG Kun, ZHANG Jing-wei. Effect of Na2CO3 solution treatment on properties of Ni-Mo/HZSM-5 thioetherfication catalyst[J]. J Fuel Chem Technol, 2014,42(9):1128-1134.  

    14. [14]

      TAGO T, KONNO H, SAKAMOTO M, NAKASAKA M, MASUDA T. Selective synthesis for light olefins from acetone over ZSM-5 zeolites with nano-and macro-crystal sizes[J]. Appl Catal A: Gen, 2011,403(1/2):183-191.  

    15. [15]

      SONG Chun-min, JIANG Jie, QIAO Ke, MENG Xiang-bin, YAN Zi-feng. Synthesis and characterization of microporous mesoporous composite molecular sieves[J]. Mol Catal, 2006,20(4):294-299.  

    16. [16]

      Song Y Q, Feng Y L, Liu F, KANG C L, ZHOU X L, XU Y L, YU G X. Effect of variations in pore structure and acidity of alkali treated ZSM-5 on the isomerization performance[J]. J Mol Catal A: Chem, 2009,10(1/2):130-137.  

    17. [17]

      TIAN Zhen, QIN Zhang-feng, DONG Mei, WANG Jian-guo. Effect of citric acid modification on the alkylation of Hβ zeolite[J]. Petro Chem Ind, 2004,33(S1):175-176.  

    18. [18]

      LI S, LI Y P, DI C Y, ZHANG P F, RAN R L. Modification and catalyst performance of ZSM-5 zeolite by treatment with TPAOH/NaOH mixed alkali[J]. J Fuel Chem Technol, 2012,40(2):583-588.  

    19. [19]

      GROEN, PEFFER, MOULIJN, PÉREZ-RAMÍREZ. Mesoporosity development in ZSM-5 zeolite upon optimized desilination conditions in alkaline medium[J]. Colloid Surf A, 2004,241(1/3):53-58.  

    20. [20]

      CAICEDO-REALPE R, PÉRÉZ-RAMÍREZ J. Mesoporous ZSM-5 zeolites prepared by a two-step route comprising sodium aluminate and acid treatments[J]. Microporous Mesoporous Mater, 2010,128(1/3):91-100.  

    21. [21]

      ZHU Jie, QIANG Guang, ZHANG Wei-wei, SU Ya-ru, LUO Yu-yan, LI Lu, ZHU Long-feng. Preparation of mesoporous Beta zeolite and its catalytic performance in the synthesis of 2-ethyl anthraquinone[J]. Zhejiang Chem Eng, 2016,47(7):27-30.  

    22. [22]

      JIA Dan-dan, QIN Ming-jin, ZHANG Xing-gang, SONG Lin-hua, JIANG Cui-yu. Catalytic synthesis of Ethyl Anthraquinone catalyzed by Hβ modified zeolite by acid treatment[J]. Ind Catal, 2014,22(6):466-472.  

    23. [23]

      LIU Dong-mei, ZHAI Yu-chun, MA Jian, WANG HAi-yan. Preparation of multi hole HZSM-5 catalysts and thiophene alkylation properties by different alkali treatment[J]. J Fuel Chem Technol, 2015,43(4):462-469.  

    24. [24]

      JIN Wen-qing, ZHAO Guo-liang, TENG Jia-wei, XIE Zai-ku. Catalytic cracking performance of carbon four olefin modified by sodium hydroxide[J]. Chem React Eng Process, 2007,23(3):193-199.  

    25. [25]

      XIAO He, GAO Jun-hua, HU Jin-xian, ZHANG Bin, LIU Ping, ZHANG Kan. Study on the synthesis of four toluene from methanol on acid modified HZSM-5 zeolite[J]. J Fuel Chem Technol, 2013,41(1):102-109.  

    26. [26]

      PAN Xing-peng, Xiang-ying, DU Jun, QIAN Ming-chao, YU Jiang. Kinetics of adsorption desulfurization of Beta zeolite by alkali treatment[J]. J Chem Ind, 2016, (9): 3748-3754. 

    27. [27]

      KONG Fei-fei, WANG Hai-yan, XIANG Hong-tao, LIU Dong-mei. Study on hydrodesulfurization of ZSM-5 catalyst and aromatization of olefins[J]. Petro Ref Chem Ind, 2016,47(3):60-66.  

    28. [28]

      NIE Ning, SHEN Jian. Study on catalytic alkylation of thiophene with USY zeolite[J]. Petro Technol Appl, 2013,31(2):110-114.  

    29. [29]

      ZHANG Ze-kai, JIANG Hui, LIU Sheng-lin, WANG Qing-xia, XU Long-ya. Alkylation of thiophene and its derivatives in gasoline alkylation desulfurization[J]. Catalysis, 2006,27(4):309-313.  

    30. [30]

      ZHANG Ze-kai, LIU Sheng-lin, DU Xi-yan, ZENG Peng, WANG Qing-xia, XU Long-ya. Effects of aromatics alkylation on the removal of sulfides in gasoline by alkylation[J]. Petro Chem, 2006,35(2):113-117.  

    31. [31]

      ZHANG Ze-kai, NIU Xiong-lei, ZHU Xiang-xue, LIU Sheng-lin, WANG Qing-xia, XU Long-ya. The polymerization of ethylene and its influence on alkylation in the process of gasoline alkylation desulfurization[J]. J China Univ Pet, 2008,32(1):123-127.  

  • 加载中
    1. [1]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    2. [2]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    7. [7]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    8. [8]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    11. [11]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    12. [12]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    13. [13]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    14. [14]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    17. [17]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    18. [18]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    19. [19]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    20. [20]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

Metrics
  • PDF Downloads(4)
  • Abstract views(1498)
  • HTML views(708)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return