Citation: Siyu Long, Xianglin Pei, Dan Luo, Hai Fu, Wei Gong. Progress in the Synthesis and Application of Ruthenium-Based Catalysts[J]. Chemistry, ;2021, 84(2): 120-128. shu

Progress in the Synthesis and Application of Ruthenium-Based Catalysts

Figures(6)

  • Ruthenium catalysts are emerging noble metal catalysts in recent years. Their supported catalysts have many advantages, such as low cost, recyclability and good catalytic performance, which has attracted extensive attention of researchers. The synthesis and application of supported ruthenium based catalysts in ammonia synthesis, hydrogenation and oxidation were reviewed. The support and promoters, preparation methods and catalytic performance in the reaction process were mainly described, and the existing problems in current reactions were summarized. Finally, the urgent problems to be solved at present and the main development trend in the future were proposed.
  • 加载中
    1. [1]

      Hoffer B W, Crezee E, Mooijman P R M, et al. Catal. Today, 2003, 79: 35~41.

    2. [2]

      Scholl M, Ding S, Lee C W, et al. Org. Lett., 1999, 1(6): 953~956.

    3. [3]

      Abe H, Niwa Y, Kitano M, et al. J. Phys. Chem. C, 2017, 121(38): 20900~20904.

    4. [4]

      Aika K I, Takano T, Murata S. J. Catal., 1992, 136(1): 126~140.

    5. [5]

    6. [6]

      Nguyen S T, Johnson L K, Grubbs R H. J. Am. Chem. Soc., 1992, 114(10): 3974~3975.

    7. [7]

      Schwab P, Grubbs R H, Ziller J W. J. Am. Chem. Soc., 1996, 118(1): 100~110.

    8. [8]

      Schwab P, France M B, Ziller J W, et al. Angew. Chem. Int. Ed., 1995, 34(18): 2039~2041.

    9. [9]

      Boeda F, Bantreil X, Hervé C, et al. Adv. Synth. Catal., 2008, 350(18): 2959~2966.

    10. [10]

      Monsaert S, Drozdzak R, Dragutan V, et al. Eur. J. Inorg. Chem., 2008, 3: 432~440.

    11. [11]

      Taubmann C, Tosh E, Ofele K, et al. J. Oreanomet. Chem., 2008, 693(13): 2231~2236.

    12. [12]

      Lozano-Vila A M, Monsaert S, Bajek A, et al. Chem. Rev., 2010, 110(8): 4865~4909.

    13. [13]

      Halbach T S, Mix S, Fischer D, et al. J. Org. Chem., 2005, 70(12): 4687~4694.

    14. [14]

      Fischer D, Blechert S. Adv. Synth. Catal., 2005, 347(2): 1329~1332.

    15. [15]

      Chen S W, Zhang Z C, Zhai N N, et al. Tetrahedron, 2015, 71(4): 648~653.

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

    21. [21]

      Kowalczyk Z, Sentek J, Jodzis S, et al. Carbon, 1996, 34(3): 403~409.

    22. [22]

      Zhong Z H, Aika K I. J. Catal., 1998, 280(1): 183~188.

    23. [23]

    24. [24]

    25. [25]

    26. [26]

    27. [27]

    28. [28]

      Carbajo M, Rivas F J, Beltrán F J, et al. Ozone-Sci. Eng., 2006, 28(4): 229~235.

    29. [29]

    30. [30]

    31. [31]

    32. [32]

    33. [33]

      Aika K, Hori H, Ozaki A. J. Catal., 1972, 27(3): 424~431.

    34. [34]

    35. [35]

      Goethel P J, Yang R T. J. Catal., 1988, 111: 220~226.

    36. [36]

      Smil V. Nature, 1999, 400: 415.

    37. [37]

    38. [38]

    39. [39]

    40. [40]

      Wang Z Q, Ma Y C, Lin J X. J. Mol. Catal. A, 2013, 378: 307~313.

    41. [41]

      Aika K I, Hori H, Ozaki A. J. Catal., 1972, 27(3): 424~431.

    42. [42]

      Urabe K, Aika K I, Ozaki A. J. Catal., 1976, 38(1): 430~434.

    43. [43]

      Murata S, Aika K I, Onishi T. Chem. Lett., 1990, 19(7): 1067~1068.

    44. [44]

      Kowalczyk Z, Jodzis S, Sentek J, et al. Appl. Catal. A, 1996, 138(24): 83~91.

    45. [45]

      Rossetti I, Pernicone N, Forni L. Appl. Catal. A, 2001, 208: 271.

    46. [46]

      Kowalczyk Z, Sentek J, Jodzis S, et al. Catal. Lett., 1996, 34(3): 403~409.

    47. [47]

    48. [48]

    49. [49]

    50. [50]

      Yang X L, Tang L P, Xia C G, et al. J. Mol. Catal., 2012, 26(1): 1~9.

    51. [51]

      Ponec V. Recul des Travaux Chimiques des Pays-Bas, 1996, 115: 11~12.

    52. [52]

      Ponec V. Catal. Rev., 1978, 18(6): 151~171.

    53. [53]

      Murata S, Aika K I. Appl. Catal. A, 1992, 82: 1~12.

    54. [54]

      Renda S, Ricca A, Palma V. Appl. Energ., 2020, 279: 115767.

    55. [55]

      Moggi P, Albanesi G, Predieri G, et al. Appl. Catal. A, 1995, 123(1): 145~159.

    56. [56]

      Makoto S, Masahiro I, Jun I, et al. Catal. Lett., 2006, 106(3/4): 107~110.

    57. [57]

    58. [58]

    59. [59]

    60. [60]

      Yan L L, Liu J, Wang X Z, et al. Appl. Surf. Sci., 2020, 526: 146631.

    61. [61]

      Ahsan J, Seong-Hoon K, Prakash N J, et al. J. CO2 Util., 2020, 35: 245~255.

    62. [62]

      Gunniya H G, Sudakar P, Kwangho P, et al. ChemSusChem, 2020, 13(7): 1735~1739.

    63. [63]

      Hartog F, Zwietering P. J. Catal., 1963, 2(1): 79~81.

    64. [64]

    65. [65]

    66. [66]

      Shi X F, Xing B, Pan D H, et al. ChemistrySelect, 2020, 5(13): 4040~4045.

    67. [67]

    68. [68]

    69. [69]

    70. [70]

    71. [71]

      Katona T, Guczi L, Somorjai G A. J. Catal., 1992, 135: 434~443.

    72. [72]

      Somorjai G A, Beaumont S K. Top. Catal., 2015, 58(10/11): 560~572.

    73. [73]

      Mieher W D, Ho W. Surf. Sci., 1995, 322: 151~167.

    74. [74]

    75. [75]

      Kawi S, Liu S Y, Shen S C. Catal. Today, 2001, 68: 237~244.

    76. [76]

    77. [77]

    78. [78]

      Lv L R, Wang S, Ding Y, et al. Chemosphere, 2020, 57: 127249.

    79. [79]

  • 加载中
    1. [1]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    2. [2]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    6. [6]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    10. [10]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    11. [11]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    19. [19]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(127)
  • Abstract views(4139)
  • HTML views(1972)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return