Citation: CHEN Xue-hong, ZHENG Yu-ying, FU Bin-bin, ZHENG Wei-jie. Preparation of MnO2/PoPD@PPS functional composites for low-temperature NO reduction with NH3[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(12): 1514-1521. shu

Preparation of MnO2/PoPD@PPS functional composites for low-temperature NO reduction with NH3

  • Corresponding author: ZHENG Yu-ying, yyzheng@fzu.edu.cn
  • Received Date: 7 August 2017
    Revised Date: 17 October 2017

    Fund Project: the Science and Technology Program of Fuzhou 2015H0016The project was supported by the Science and Technology Program of Fuzhou(2015H0016)

Figures(11)

  • A layer of manganese dioxide/poly (p-phenylenediamine) (PoPD) complex was coated on the surface of polyphenylene sulfide (PPS). First, the o-phenylenediamine (OPD) monomer was uniformly adsorbed on the surface of the PPS fiber by the effect of π-π conjugation. Then, the o-phenylenediamine was oxidized by the potassium permanganate solution to produce poly (p-phenylenediamine) coat, while the potassium permanganate was reduced to MnO2 catalyst and inserted into the poly (o-phenylenediamine) matrix. The MnO2 catalyst was firmly bonded with the PPS filter because the MnO2/PoPD complex formed by in-situ polymerization exhibited a strong bond with the PPS filter. The preparation method of MnO2/PoPD@PPS composite filter was simple. Due to the mild experimental conditions, the performance of the PPS filter media was not damaged. The structure and properties of MnO2/PoPD@PPS composite filter were studied in detail by FESEM, XPS, XRD, FT-IR and denitrification test. The results of denitration test show that the denitrification rate of MnO2/PoPD@PPS composite filter increases with the increase of KMnO4/PPS mass ratio. The optimum denitrification rate is 36%-94% at 80-180℃ with the KMnO4/PPS mass ratio of 1:1, and it is 88% at 160℃ after 10 h catalyst stability test. The XPS spectrum of Mn 2p proves that the catalyst on the composite filter is MnO2 that possesses amorphous structure observed from XRD patterns. It can be observed from the FESEM diagram that the dispersion of the MnO2 catalyst on the PPS filter is uniform.
  • 加载中
    1. [1]

      SHEN Bo-xiong, GUO Bin-bin, SHI Zhan-liang, WU Chun-fei, LIANG Cai. Low temperature SCR of NO in flue gas on CeO2/ACF[J]. J Fuel Chem Technol, 2007,35(1):125-128.  

    2. [2]

      ZHANG Xiao-peng, SHEN Bo-xiong. Selective catalytic reduction of NO with NH3 over Mn-based catalysts at low temperature[J]. J Fuel Chem Technol, 2013,41(1):123-128.  

    3. [3]

      SHEN Mei-qing, LI Chen-xu, WANG Jian-qiang, XU Li-li, WANG Wu-lin, WANG Jun. New insight into the promotion effect of Cu doped V2O5/WO3-TiO2 for low temperature NH3-SCR performance[J]. Rsc Adv, 2015,5(44):35155-35165. doi: 10.1039/C5RA04940G

    4. [4]

      LIAN Zhi-hua, LIU Fu-dong, HE Hong, LIU Kuo. Nb-doped VOx/CeO2 catalyst for NH3-SCR of NOx at low temperatures[J]. Rsc Adv, 2015,5(47):37675-37681. doi: 10.1039/C5RA02752G

    5. [5]

      LIU Qing, ZHENG Yu-ying, WANG Xie. Research on de-NO by low-temperature SCR based on MnOx-CeO2/PPSN[J]. J Fuel Chem Technol, 2012,4:452-455.  

    6. [6]

      QIU Yun-shun, SHEN Yue-song, YANG Bo, SHEN Shu-bao, ZHU She-min. Study of Influencing Factors on Low-temperature Catalytic Performance of Mn-Ce-Ni-Ox/PPS Filter for NH3-SCR of NO[J]. Coal Technol, 2015,2:316-318.

    7. [7]

      YANG Bo, SHEN Yue-song, QIU Yun-shun, ZENG Yan-wei, SHEN Shu-bao, ZHU She-min. Influencing factors on low-temperature deNOx performance of Mn-La-Ce-Ni-Ox/P84[J]. Chinese J Environmental Engine, 2016,10(11):6583-6587.

    8. [8]

      CHEN Xiao-jun, ZHANG Qi, QIAN Chun-hua, HAO Ning, LIN Xub, CHENG Yaoa. Electrochemical aptasensor for mucin 1 based on dual signal amplification of poly(o-phenylenediamine) carrier and functionalized carbon nanotubes tracing tag[J]. Biosen Bioelectron, 2015,64(22)485.  

    9. [9]

      YUAN C, LIU X, JIA M, LUO Z, YAO J. Facile preparation of N-and O-doped hollow carbon spheres derived from poly(o-phenylenediamine) for supercapacitors[J]. Chem Mater, 2015,3(7):3409-3415. doi: 10.1039/C4TA06411A

    10. [10]

      ZHANG Y, ZHENG Y, WANG X, LU X. Preparation of Mn-FeOx /CNTs catalysts by redox co-precipitation and application in low-temperature NO reduction with NH3[J]. J Catal Commun, 2015,62:57-61. doi: 10.1016/j.catcom.2014.12.023

    11. [11]

      QIU Bin, XU Cui-xia, SUN De-zhi, WANG Qiang, GU Hong-bo, ZHANG Xin, WEEKS B L, HOPPER J, HOT C, GUO Zhan-hu, WEI Su-ying. Polyaniline coating with various substrates for hexavalent chromium removal[J]. Appl Surf Sci, 2015,334:7-14. doi: 10.1016/j.apsusc.2014.07.039

    12. [12]

      YU Jun, SI Zhi-chun, CHEN Lei, WU Xiao-dong, WENG Duan. Selective catalytic reduction of NOx by ammonia over phosphate-containing Ce0.75Zr0.25O2 solids[[J]. Appl Catal B: Environmental, 22015,163:223-232.  

    13. [13]

      WANG Ji-hui, DONG Xue-song, WANG Yu-jie, LI Yong-dan. Effect of the calcination temperature on the performance of a CeMoOx catalyst in the selective catalytic reduction of NOx with ammonia[J]. Catal Today, 2015,245:10-15. doi: 10.1016/j.cattod.2014.07.035

    14. [14]

      HUANG Xue-hui, NIU Peng-ju, SHANG Xiao-hui. Low temperature molten salt synthesis of porous La1-xSrxMn0.8Fe0.2O3 (0≤x≤0.6) microspheres with high catalytic activity for CO oxidation[J]. Chinese J Catal, 2016,37(8):1431-1439. doi: 10.1016/S1872-2067(16)62502-0

    15. [15]

      SHEN Yu, WANG Lian-feng, WU Yan-bo, LI Xin-yong, ZHAO Qi-dong, HOU Yang, TENG Wei. Facile solvothermal synthesis of MnFe2O4, hollow nanospheres and their photocatalytic degradation of benzene investigated by in situ FT-IR[J]. Catal Commun, 2015,68:11-14. doi: 10.1016/j.catcom.2015.04.025

    16. [16]

      LI Na, ZHU Xiao-hong, ZHANG Cai-yun, LAI Liu-qin. Fabrication of PANI-coated honeycomb-like MnO2 nanosphereswith enhanced electrochemical performance for energy storage[J]. Electro Acta, 2015,180:977-982. doi: 10.1016/j.electacta.2015.09.056

    17. [17]

      ZHANG Yan-bing, ZHENG Yu-ying, WANG Xie, LU Xiu-lian. Preparation of Mn-FeOx /CNTs catalysts by redox co-precipitation and application in low-temperature NO reduction with NH3[J]. Catal Communs, 2015,62:57-61. doi: 10.1016/j.catcom.2014.12.023

  • 加载中
    1. [1]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    2. [2]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    3. [3]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    4. [4]

      Haoting WangMengfan LuoYuzhong WangJialong YinHeng ZhangJia ZhaoBo Lai . Mn(Ⅱ) enhanced permanganate oxidation of trace organic pollutants in water: Critical role of in situ formation of colloidal MnO2. Chinese Chemical Letters, 2025, 36(6): 110348-. doi: 10.1016/j.cclet.2024.110348

    5. [5]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    8. [8]

      Kun ChenHuimin LinXin PengZiying WuJingyue DaiYi SunYaxuan FengZiyi HuangZhiqiang YuMeng YuGuangyu YaoJigang WangIn situ synthesis of MnO2 micro/nano-adjuvants for enhanced immunotherapy of breast tumors. Chinese Chemical Letters, 2025, 36(5): 110045-. doi: 10.1016/j.cclet.2024.110045

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    11. [11]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    12. [12]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    13. [13]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    14. [14]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    15. [15]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    16. [16]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    17. [17]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

Metrics
  • PDF Downloads(1)
  • Abstract views(2369)
  • HTML views(662)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return