Citation: LI Wei, XIE Xin-an, TANG Cheng-zheng, LI Yan, LI Lu, WANG Ya-li, WEI Xing, FAN Di. Effects of hydroxyl and hydrogen free radicals on the liquefaction of cellulose in sub/supercritical ethanol[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(4): 415-421. shu

Effects of hydroxyl and hydrogen free radicals on the liquefaction of cellulose in sub/supercritical ethanol

  • Corresponding author: XIE Xin-an, xinanxie@scau.edu.cn
  • Received Date: 12 November 2015
    Revised Date: 3 January 2016

Figures(8)

  • With salicylic acid as hydroxyl radical (HO·) trap and carbon tetrachloride as hydrogen radical (H·) trap, the effects of HO· and H· radicals on the liquefaction of cornstalk cellulose in sub/supercritical ethanol was investigated in an autoclave. The results indicated that the concentration of HO· radical increases with the increase of salicylic acid amount added in the feed from 0 to 4 mL; meanwhile, the bio-oil yield is increased from 29.3% to 47.9%, whereas the residue yield is decreased from 26.7% to 24.3%. The activity of HO· increases with the increase of reaction temperature from 250 to 320 ℃; meanwhile, the bio-oil yield is increased from 35.9% to 58.2%, whereas the residue yield is reduced from 51.8% to 20.4%. On the other hand, the concentration of H· radical decreases with the increase of carbon tetrachloride from 0 to 2 mL; meanwhile, the bio-oil yield is decreased from 24.7% to 20.7%, whereas the residue yield is increased from 54.1% to 59.1%. The liquefaction of cellulose is enhanced within 30 min due to the increase of H· activity; after that, the bio-oil yield begins to decline due to the inhibition of H· activity by CCl4. Current results proved that ethanol can produce HO· and H· radicals under sub/supercritical state; the concentration and activity of HO· and H· radicals are dependent on the reaction conditions, which may determine the product yield and distribution for the liquefaction of cellulose in sub/supercritical ethanol.
  • 加载中
    1. [1]

      CHEN Xiao-fei. Analysis of the products from alkanolysis of the rice-stalk powder and related mechanism study[D]. Wuhan: Wuhan University of Science and Technology, 2008.

    2. [2]

      HIROIKU K, FUMIO K. Free radical behavior in thermal cracking reaction using petroleum oil and model compounds[J]. Catal Today, 1998,43:281-289. doi: 10.1016/S0920-5861(98)00157-6

    3. [3]

      HUANG Jin-bao, LIU Chao, WEI Shun-an. Thermodynamic studies of pyrolysis mechanism of cellulose monomer[J]. Asta Chim Sin, 2009,67(18):2081-2086.  

    4. [4]

      EDITA J, MATJAZ K, MATIJA S. Cellulose liquefaction in acidified ethylene glycol[J]. Cellulose, 2009(16):393-405.  

    5. [5]

      HESSEIN M, KEAT T L, SUBHASH B, ABDUL R M. Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil: Effect of solvent[J]. Bioresour Technol, 2010,101:7641-7647. doi: 10.1016/j.biortech.2010.04.072

    6. [6]

      TAO Hong-xiu, XIE Xin-an, ZHENG Chao-yang, TANG Cheng-zheng, ZHAN Xiao-qing. Liquefaction of cornstalk cellulose in sub/super-critical ethanol[J]. J Northwest A & F Univ (Nat Sci Ed), 2014(01):196-204.  

    7. [7]

      YAO Bo, ZHU Tong, LIN Wei-li. Silanization of DHBAs and measurement of gas phase hydroxyl radicals using Gas Chromatography-Mass Spectrometry[J]. Environ Chem, 2006,25(6):773-775.  

    8. [8]

      ZHOU Jian-zheng, DONG Hua-jin. Determination of hydroxyl radical in fenton reaction by using high performance liquid chromatograph (HPLC) connected with electrochemical detector[J]. Chin J Pharmacol Toxicol, 1995,9(4):299-302.  

    9. [9]

      RICHMOND R, HALLIWELL B. Formation of hydroxyl radicals from the paraquat radical cation, demonstrated by a highly specific gas chromatographic technique. the role of superoxide radical anion, hydrogen peroxide, and glutathione reductase[J]. J Inorg Biochem, 1982,17(2):95-107. doi: 10.1016/S0162-0134(00)80078-1

    10. [10]

      NIE Min, WANG Qi, QIU Gui-hua. Effect of Hydrogen radical scavenger on ultrasonically initiated emulsion polymerization of styrene[J]. Acta Polym Sin, 2007(7):633-637.  

    11. [11]

      ZHENG Chao-yang, XIE Xin-an, TAO Hong-xiu, ZHENG Lu-si, LI Yan. Depolymerization of stalk cellulose during its liquefaction in sub-and supercritical ethanol[J]. J Fuel Chem Technol, 2012,40(5):526-532.  

    12. [12]

      SHARYPOV V I, KUZNETSOV B N. Catalytic hydroliquefaction of barzass liptobiolitic coal in a petroleum residue as a solvent[J]. Fuel, 2006,85(7):918-922.  

    13. [13]

      PÜTÜN A E, ÖZCAN A, PÜTÜN E. Pyrolysis of hazelnut shells in a fixed-bed tubular reactor: Yields and structural analysis of bio-oil[J]. J Anal Appl Pyrolysis, 1999,52(1):33-49. doi: 10.1016/S0165-2370(99)00044-3

    14. [14]

      WU Jing-li, WANG Cong-wei, YIN Xiu-li, WU Chuang-zhi, MA Long-long, ZHOU Zhao-qiu, CHEN Han-ping. Study on pyrolysis of heavy fractions of bio-oil by using TG-FTIR analysis[J]. Acta Energ Sol Sin, 2010,31(1):113-117.  

    15. [15]

      LIAO Yan-fen, LUO Zhong-yang, WANG Shu-rong, YU Chun-jiang, CEN Ke-fa. Mechanism of fast pyrolysis of celluloseⅠ. Experimental research[J]. J Fuel Chem Technol, 2003,31(2):133-138.  

    16. [16]

      TAO Hong-xiu, XIE Xin-an, TANG Cheng-zheng, TIAN Wen-guang. Mechanism of ketones formation from cellulose liquefaction in sub-and supercritical ethanol[J]. J Fuel Chem Technol, 2013,41(1):60-66.  

    17. [17]

      SHAO Qian-jun, PENG Jin-xing, XIU Shu-dong, WEN Xian-hong. Analysis of oil products by pyrolysis of bamboo in supercritical methanol[J]. Acta Energ Sol Sin, 2007,28(9):984-987.  

    18. [18]

      SOARES S, RICARDO N M P S, JONES S, HEATLEY F. High temperature thermal degradation of cellulose in air studied using FT-IR and 1H and 13C solid-state NMR[J]. Eur Polym J, 2001,37(4):737-745. doi: 10.1016/S0014-3057(00)00181-6

    19. [19]

      GUO Z, BAI Z, BAI J, WANG Z, LI W. Co-liquefaction of lignite and sawdust under syngas[J]. Fuel Process Technol, 2011,92(1):119-125. doi: 10.1016/j.fuproc.2010.09.014

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    3. [3]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    4. [4]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    5. [5]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    8. [8]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    9. [9]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    10. [10]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    11. [11]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    12. [12]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    13. [13]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    14. [14]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    15. [15]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    18. [18]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(10)
  • Abstract views(1681)
  • HTML views(384)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return