Citation: WANG Xin-bo, LI Xiu-ping, ZHAO Rong-xiang. Synthesis of EMIES/p-TsOH type deep eutectic solvent and its oxidative desulfurization performance[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(1): 104-112. shu

Synthesis of EMIES/p-TsOH type deep eutectic solvent and its oxidative desulfurization performance

  • Corresponding author: ZHAO Rong-xiang, zylhzrx@126.com
  • Received Date: 17 September 2018
    Revised Date: 2 November 2018

    Fund Project: The project was supported by Doctoral Fund of Liaoning Province(201501105)Doctoral Fund of Liaoning Province 201501105

Figures(13)

  • The deep eutectic solvent (DESs) of EMIES/p-TsOH was synthesized by stirring a mixture of 1-ethyl-3-methylimidazolium ethyl sulfate (EMIES) and p-toluene sulfonic acid (p-TsOH), the structure of catalysts was characterized by infrared analysis (FT-IR), hydrogen spectrum analysis (1H-NMR) and thermogravimetric analysis(TG), the desulfurization performance of model oil was investigated using EMIES/p-TsOH as a catalyst and extraction agent and using H2O2 as the oxidation, and the effects of the temperature, n(H2O2)/n(S) molar ratio, and the amount of DESs on the desulfurization activity were investigated in detail. Under the optimal conditions, the removal rate of dibenzothiophene (DBT), 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) and benzothiophene (BT) can reach up to 96.2%, 92.2% and 88.8%, respectively. After five recycling runs, the removal rate of DBT can still reach 93.6%. The kinetic analysis of the desulfurization system indicates that the apparent activation energy is 66.4 kJ/mol.
  • 加载中
    1. [1]

      ABRO R, ABDELTAWAB A A, AL-DEYAB S S, YU G R, QAZI A B, GAO S R, CHEN X C. A review of extractive desulfurization of fuel oils using ionic liquids[J]. Rsc Adv, 2014,4(67):35302-35317. doi: 10.1039/C4RA03478C

    2. [2]

      CAMPOS-MARTIN J M, CAPEL-SANCHEZ M C, PEREZ-PRESAS P, FIERRO J L G. Oxidative processes of desulfurization of liquid fuels[J]. J Appl Chem Biotechnol, 2010,85(7):879-890. doi: 10.1002/jctb.v85:7

    3. [3]

      LI H, ZHU W, LU J, JIANG X, GONG L, ZHU G, YAN Y. Deep oxidative desulfurization of fuels catalyzed by pristine simple tungstic acid[J]. React Kinet Catal Lett, 2009,96(1):165-173. doi: 10.1007/s11144-009-5426-7

    4. [4]

      CHEN J, CHEN C, ZHANG R, GUO L, HUA L, CHEN A, XIU Y, LIU X, HOU Z. Deep oxidative desulfurization catalyzed by an ionic liquid-type peroxotungsten catalyst[J]. RSC Adv, 2015,5(33):25904-25910. doi: 10.1039/C5RA00136F

    5. [5]

      NIE Y, LI C, SUN A, MENG H, WANG Z. Extractive desulfurization of gasoline using imidazolium-based phosphoric ionic liquids[J]. Energy Fuels, 2006,20(5):2083-2087. doi: 10.1021/ef060170i

    6. [6]

      EßER J, WASSERSCHEID P, JESS A. Deep desulfurization of oil refinery streams by extraction with ionic liquids[J]. Green Chem, 2004,6(7):316-322. doi: 10.1039/B407028C

    7. [7]

      Lü H, REN W, WANG H, WANG Y, CHEN W, SUO Z. Deep desulfurization of diesel by ionic liquid extraction coupled with catalytic oxidation using an Anderson-type catalyst[(C4H9)4N]4NiMo6O24H6[J]. Appl Catal, 2013,453:376-382. doi: 10.1016/j.apcata.2012.12.047

    8. [8]

      HAGENSON L C, NAIK S D, DORAISWAMY L K. Rate enhancements in a solid-liquid reaction using PTC, microphase, ultrasound and combinations thereof[J]. Chem Eng Sci, 1994,49(24):4787-4800. doi: 10.1016/S0009-2509(05)80059-4

    9. [9]

      SHEN Y, LU X, MA X, HE J, ZHANG D, ZHAN H, XIA Q. Oxidative desulfurization of thiophene derivatives with H2O2 in the presence of catalysts based on MoO3/Al2O3 under mild conditions[J]. Kinet Catal, 2017,58(1):28-33.  

    10. [10]

      YANG Y, LV G, DENG L, LU B, LI J, ZHANG J, SHI J, DU S. Ultra-deep desulfurization of diesel fuel via selective adsorption over modified activated carbon assisted by pre-oxidation[J]. J Cleaner Prod, 2017,161:422-430. doi: 10.1016/j.jclepro.2017.05.112

    11. [11]

      SAEEDIRAD R, GANJALI S T, BAZMI M, RASHIDI A. Effective mesoporous silica-ZIF-8 nano-adsorbents for adsorptive desulfurization of gas stream[J]. J Taiwan Inst Chem Eng, 2018,82:10-22. doi: 10.1016/j.jtice.2017.10.037

    12. [12]

      LI G, LI S, ZHANG M, WANG J, ZHU L, LIANG F, LIU R, MA T. Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis[J]. Appl Environ Microbiol, 2008,74(4):971-976. doi: 10.1128/AEM.02319-07

    13. [13]

      LU Q, PENG W, XUN S, HE M, MA R, JIANG W, ZHU W, LI H. Controllable preparation of highly dispersed TiO2 nanoparticles for enhanced catalytic oxidation of dibenzothiophene in fuels[J]. Appl Organomet Chem, 2018,32(6)e4351. doi: 10.1002/aoc.v32.6

    14. [14]

      CHAKMA S, DAS L, MOHOLKAR V S. Dye decolorization with hybrid advanced oxidation processes comprising sonolysis/Fenton-like/photo-ferrioxalate systems:A mechanistic investigation[J]. Sep Purif Technol, 2015,156:596-607. doi: 10.1016/j.seppur.2015.10.055

    15. [15]

      YAZU K, YAMAMOTO Y, FURUYA T, MIKI K, UKEGAWA K. Oxidation of dibenzothiophenes in an organic biphasic system and its application to oxidative desulfurization of light oil[J]. Energy Fuels, 2001,15(6):1535-1536. doi: 10.1021/ef0101412

    16. [16]

      MAO Chun-feng, ZHAO Rong-xiang, LI Xiu-ping. Removal of sulfides from simulated oil by CH3CONH2/ZnCl2 deep eutectic solvent[J]. J Liaoning Shihua Univ, 2017,37(5):1-7. doi: 10.3969/j.issn.1672-6952.2017.05.001

    17. [17]

      ALIZADEH A, FAKHARI M, KHODEAI M M, ABDI G, AMIRIAN J. Oxidative desulfurization of model oil in an organic biphasic system catalysed by Fe3O4@SiO2-ionic liquid[J]. RSC Adv, 2017,7(56):34972-34983. doi: 10.1039/C7RA04957A

    18. [18]

      ZHANG S, ZHANG Q, ZHANG Z C. Extractive desulfurization and denitrogenation of fuels using ionic liquids[J]. Ind Eng Chem Res, 2004,43(2):614-622. doi: 10.1021/ie030561+

    19. [19]

      BÖSMANN A, DATSEVICH L, JESS A, LAUTER A, SCHMITZ C, WASSERSCHEID P. Deep desulfurization of diesel fuel by extraction with ionic liquids[J]. Chem Commun, 2001(23):2494-2495. doi: 10.1039/b108411a

    20. [20]

      HUANG C, CHEN B, ZHANG J, LIU Z, LI Y. Desulfurization of gasoline by extraction with new ionic liquids[J]. Energy Fuels, 2004,18(6):1862-1864. doi: 10.1021/ef049879k

    21. [21]

      GANO Z S, MJALLI F S, AL-WAHAIBI T, AL-WAHAIBI Y, ALNASHEF I M. Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents:experimental design and optimization by central-composite design[J]. Chem Eng Process, 2015,93:10-20. doi: 10.1016/j.cep.2015.04.001

    22. [22]

      LI C, LI D, ZOU S, LI Z, YIN J, WANG A, CUI Y, YAO Z, ZHAO Q. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents[J]. Green Chem, 2013,15(10):2793-2799. doi: 10.1039/c3gc41067f

    23. [23]

      YIN J, WANG J, LI Z, LI D, YANG G, CUI Y, WANG A, LI C. Deep desulfurization of fuels based on an oxidation/extraction process with acidic deep eutectic solvents[J]. Green Chem, 2015,17(9):4552-4559. doi: 10.1039/C5GC00709G

    24. [24]

      LIU W, JIANG W, ZHU W, ZHU W, LI H, GUO T, ZHU W, LI H. Oxidative desulfurization of fuels promoted by choline chloride-based deep eutectic solvents[J]. J Mol Catal A:Chem, 2016,424:261-268. doi: 10.1016/j.molcata.2016.08.030

    25. [25]

      CAO J, SHANG Y, QI B, SUN X, ZHANG L, LIU H, ZHANG H, ZHOU X. Synthesis of pillar[n] arenes (n=5 and 6) with deep eutectic solvent choline chloride 2FeCl3[J]. RSC Adv, 2015,5(13):9993-9996. doi: 10.1039/C4RA15758C

    26. [26]

      DAI D, WANG L, CHEN Q, HE M. Selective oxidation of sulfides to sulfoxides catalysed by deep eutectic solvent with H2O2[J]. J Chem Res, 2014,38(3):183-185. doi: 10.3184/174751914X13923144871332

    27. [27]

      Lü H, LI P, DENG C, REN W, WANG S, LIU P. Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs)[J]. Chem Commun, 2015,51(53):10703-10706. doi: 10.1039/C5CC03324A

    28. [28]

      MAO C, ZHAO R, LI X. Phenylpropanoic acid-based DESs as efficient extractants and catalysts for the removal of sulfur compounds from oil[J]. Fuel, 2017,189:400-407. doi: 10.1016/j.fuel.2016.10.113

    29. [29]

      HOLBREY J D, REICHERT W M, SWATLOSKI R P, GRANT A. Efficient, halide free synthesis of new, low cost ionic liquids:1, 3-dialkylimidazolium salts containing methyl-and ethyl-sulfate anions[J]. Green Chem, 2002,4(5):407-413. doi: 10.1039/b204469b

    30. [30]

      LI C, LI D, ZOU S, LI Z, YIN J, WANG A, CUI Y, YAO Z. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents[J]. Green Chem, 2013,15(10):2793-2799. doi: 10.1039/c3gc41067f

    31. [31]

      WHEELER J L, PUGH M K, ATKINS S J, PORTER J M. Thermal breakdown kinetics of 1-ethyl-3-methylimidazolium ethylsulfate measured using quantitative infrared spectroscopy[J]. Appl Spectrosc, 2017,71(12):2626-2631. doi: 10.1177/0003702817727293

    32. [32]

      HAO L, WANG M, SHAN W, DENG C, REN W, SHI Z, LV H. L-proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel[J]. J Hazard Mater, 2017,339:216-222. doi: 10.1016/j.jhazmat.2017.06.050

    33. [33]

      GÍMEZ E, GONZÁLEZ B, CALVAR N, TOJO E, DOMINGUEZ A. Physical properties of pure 1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures[J]. J Chem Eng Data, 2006,51(6):2096-2102. doi: 10.1021/je060228n

    34. [34]

      DONG Y, NIE Y, ZHOU Q. Highly efficient oxidative desulfurization of fuels by Lewis acidic ionic liquids based on iron chloride[J]. Chem Eng Technol, 2013,36(3):435-442. doi: 10.1002/ceat.v36.3

    35. [35]

      YUAN B, LI Y, YU F, LI X, XIE C, YU S. Benzylation with benzyl alcohol catalyzed by[ChCl] [TfOH]2, a brønsted acidic des with reaction control self-separation performance[J]. Catal Lett, 2018,148(7):2133-2138. doi: 10.1007/s10562-018-2403-7

    36. [36]

      CHEN W J, XUE Z M, WANG J F, JIANG J Y, ZHAO X H, MU T C. Investigation on the thermal stability of deep eutectic solvents[J]. Acta Phy Chim Sin, 2017,34(8):904-911.  

    37. [37]

      SHU C, SUN T, ZHANG H, JIA J, LOU Z. A novel process for gasoline desulfurization based on extraction with ionic liquids and reduction by sodium borohydride[J]. Fuel, 2014,121:72-78. doi: 10.1016/j.fuel.2013.12.037

    38. [38]

      JIANG W, ZHU W, LI H, WANG X, YIN S, CHANG Y, LI H. Temperature-responsive ionic liquid extraction and separation of the aromatic sulfur compounds[J]. Fuel, 2015,140:590-596. doi: 10.1016/j.fuel.2014.09.083

    39. [39]

      SHU C, SUN T, ZHANG H, JIA J, LOU Z. A novel process for gasoline desulfurization based on extraction with ionic liquids and reduction by sodium borohydride[J]. Fuel, 2014,121:72-78. doi: 10.1016/j.fuel.2013.12.037

    40. [40]

      CHEN J, CHEN C, ZHANG R, LI G, LI H, CHEN A, XIU Y, LIU X, HOU Z. Deep oxidative desulfurization catalyzed by an ionic liquid-type peroxotungsten catalyst[J]. RSC Adv, 2015,5(33):25904-25910. doi: 10.1039/C5RA00136F

    41. [41]

      ZHANG C, PAN X, WANG F, LIU X. Extraction-oxidation desulfurization by pyridinium-based task-specific ionic liquids[J]. Fuel, 2012,102:580-584. doi: 10.1016/j.fuel.2012.07.040

    42. [42]

      GAO H, GUO C, XING J, LIU H. Deep desulfurization of diesel oil with extraction using pyridinium-based ionic liquids[J]. Sep Sci Technol, 2012,47(2):325-330. doi: 10.1080/01496395.2011.620583

    43. [43]

      ZHU W S, LI H, GU Q Q, WU P, ZHU G, YAN Y S, CHEN G Y. Kinetics and mechanism for oxidative desulfurization of fuels catalyzed by peroxo-molybdenum amino acid complexes in water-immiscible ionic liquids[J]. J Mol Catal A:Chem, 2011,336(1):16-22.  

    44. [44]

      WANG D, QIAN E W, AMANO H, OKATA K, ISHIHARA A, KABE T. Oxidative desulfurization of fuel oil:Part Ⅰ. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide[J]. Appl Catal A:Gen, 2003,253(1):91-99. doi: 10.1016/S0926-860X(03)00528-3

    45. [45]

      WEI L, ZHOU Z Y, CHEN S P, XU C D, SU D, SCHUSTER M E, SUN S G. Electrochemically shape-controlled synthesis in deep eutectic solvents:Triambic icosahedral platinum nanocrystals with high-index facets and their enhanced catalytic activity[J]. Chem Commun, 2013,49(95):11152-11154. doi: 10.1039/c3cc46473c

    46. [46]

      TRAKARNPRUK W, RUJIRAWORAWUT K. Oxidative desulfurization of gas oil by polyoxometalates catalysts[J]. Fuel Process Technol, 2009,90(3):411-414. doi: 10.1016/j.fuproc.2008.11.002

    47. [47]

      NIE Y, DONG Y, GAO H, ZHANG X, ZHANG S. Regulating sulfur removal efficiency of fuels by Lewis acidity of ionic liquids[J]. Sci China:Chem, 2016,59(5):526-531. doi: 10.1007/s11426-016-5563-6

    48. [48]

      LI L, ZHANG J, SHEN C, WANG Y, LUO G. Oxidative desulfurization of model fuels with pure nano-TiO2 as catalyst directly without UV irradiation[J]. Fuel, 2016,167:9-16. doi: 10.1016/j.fuel.2015.11.047

    49. [49]

      SHIRAISHI Y, TACHIBANA K, HIRAI T, KOMASAWA I. Desulfurization and denitrogenation process for light oils based on chemical oxidation followed by liquid-liquid extraction[J]. Ind Eng Chem Res, 2002,41(17):4362-4375. doi: 10.1021/ie010618x

    50. [50]

      YAN X M, MEI P, XIONG L, GAO L, YANG Q, GONG L. Mesoporous titania-silica-polyoxometalate nanocomposite materials for catalytic oxidation desulfurization of fuel oil[J]. Catal Sci Technol, 2013,3(8):1985-1992. doi: 10.1039/c3cy20732c

    51. [51]

      ZHANG M, ZHU W, XUN S, LI H, GU Q, ZHAO Z, WANG Q. Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids[J]. Chem Eng J, 2013,220:328-336. doi: 10.1016/j.cej.2012.11.138

  • 加载中
    1. [1]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    2. [2]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    3. [3]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    4. [4]

      Zhanxiang Liu Chengshan Yuan Jie Han Shuanglian Cai Qihan Zhang Lin Wu Yuan Zheng Xingwen Sun Qingwen Liu Ying Xiong Guangao Yu Xin Du Houjin Li Jianrong Zhang Shuyong Zhang . Recommendations for Basic Operations and Standards for Organic Chemical Extraction and Washing Experiments. University Chemistry, 2025, 40(5): 55-65. doi: 10.12461/PKU.DXHX202410039

    5. [5]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    6. [6]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    7. [7]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    8. [8]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    9. [9]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    10. [10]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    16. [16]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    17. [17]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    18. [18]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    19. [19]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    20. [20]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

Metrics
  • PDF Downloads(7)
  • Abstract views(3075)
  • HTML views(310)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return