Citation: WU Da-kai, WANG Xu, GAO Xin-hua, MA Qing-xiang, ZHANG Jian-li, FAN Su-bing, ZHAO Tian-sheng. Preparation of layered K-Fe-Zn-Ti catalyst and its performance in the hydrogenation of carbon dioxide to light olefins[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(8): 949-956. shu

Preparation of layered K-Fe-Zn-Ti catalyst and its performance in the hydrogenation of carbon dioxide to light olefins

  • Corresponding author: GAO Xin-hua, gxh@nxu.edu.cn ZHANG Jian-li, zhangjl@nxu.edu.cn
  • Received Date: 22 March 2019
    Revised Date: 9 May 2019

    Fund Project: the Key R & D Project of Ningxia 2018BEE03010the Natural Science Foundation of Ningxia 2018AAC02002The project was supported by the National Natural Science Foundation of China (21666030), the Natural Science Foundation of Ningxia (2018AAC02002) and the Key R & D Project of Ningxia (2018BEE03010)the National Natural Science Foundation of China 21666030

Figures(9)

  • A series of layered K-Fe-Zn-Ti catalysts with different Zn/Fe molar ratios were prepared by high-temperature solid state reaction and characterized by SEM, TEM, XRD, H2-TPR, CO2-TPD, XPS, N2 sorption and TG measurements; the performance of K-Fe-Zn-Ti catalysts in the hydrogenation of CO2 to light olefins was investigated. The results indicate that the K-Fe-Zn-Ti catalysts have the typical layered structure with K2.3Fe2.3Ti5.7O16 as the main phase. ZnFe2O4 appears on the Zn promoted K-Fe-Zn-Ti catalysts, which may reduce the crystallinity, enhance the surface basicity, and promote the adsorption of CO2. The K-Fe-Zn-Ti catalysts exhibit high selectivity to olefins in CO2 hydrogenation; the ratio of olefins to paraffins in the products (O/P) is higher than 6.5. The addition of Zn can enhance the formation of C5+ hydrocarbons and especially C4+ linear alpha-olefins (LAOs); the content of LAOs in C4+ hydrocarbons over Zn promoted K-Fe-Zn-Ti reaches 75.2%, in comparison with the value of 54.6% over the Zn-free K-Fe-Ti catalyst. In particular, the 0.8K-1.8Fe-0.6Zn-1.3Ti catalyst displays the highest O/P value (7.8), although the effect of Zn content in the Zn-promoted K-Fe-Zn-Ti catalysts on the yield of heavy hydrocarbons and selectivity to alpha-olefins is less significant. Moreover, the K-Fe-Zn-Ti catalysts display high stability in CO2 hydrogenation and the LMO structure remains almost intact after a long term reaction test of 100 h.
  • 加载中
    1. [1]

      WANG W, WANG S P, MA X B, GONG J L. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chem Soc Rev, 2011,40(7):3703-3727. doi: 10.1039/c1cs15008a

    2. [2]

      WANG J J, YOU Z Y, ZHANG Q H, DENG W P, WANG Y. Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts[J]. Catal Today, 2013,215(41):186-193.  

    3. [3]

      WEI J, GE Q J, YAO R W, WEN Z Y, FANG C Y, GUO L S, XU H Y, SUN J. Directly converting CO2 into a gasoline fuel[J]. Nat Commun, 2017,815174. doi: 10.1038/ncomms15174

    4. [4]

      ROHDE M P, UNRUH D, SCHAUB G. Membrane application in Fischer-Tropsch synthesis to enhance CO2 Hydrogenation[J]. Ind Eng Chem Res, 2005,44(25):9653-9658. doi: 10.1021/ie050289z

    5. [5]

      SONG C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing[J]. Catal Today, 2006,115(1):2-32.  

    6. [6]

      PRASAD P S S, BAE J W, JUN K W, LEE K W. Fischer-Tropsch synthesis by carbon dioxide hydrogenation on Fe-based catalysts[J]. Catal Surv Asia, 2008,12(3):170-183.  

    7. [7]

      ZHANG Juan, CHEN Jian-gang, CHEN Cong-biao, WANG Zhan-xiu, WANG Jun-gang, SUN Yu-han. Secondary reaction of olefin over Co-based catalyst for Fischer-Tropsch synthesis[J]. Petrochem Technol, 2010,39(8):855-860.  

    8. [8]

      GUO L S, SUN J, JI X W, WEI J, WEN Z Y, YAO R W, XU H Y, QE Q J. Directly converting carbon dioxide to linearα-olefins on bio-promoted catalysts[J]. Commun Chem, 2018,111. doi: 10.1038/s42004-018-0012-4

    9. [9]

      TU Jun-ling, XU Yong-jun, DING Ming-yue, WANG Tie-jun, WANG Long-long, WANG Min-long. Preparation of nano-structured Fe3O4 catalysts and their performance in Fischer-Tropsch synthesis[J]. J Fuel Chem Technol, 2015,43(7):839-845. doi: 10.3969/j.issn.0253-2409.2015.07.008 

    10. [10]

      WANG X, WU D K, ZHANG J L, GAO X H, MA Q X, FAN S B, ZAHO T S. Highly selective conversion of CO2 to light olefins via Fischer-Tropsch synthesis over stable layered K-Fe-Ti catalysts[J]. Appl Catal A:Gen, 2019,573:32-40. doi: 10.1016/j.apcata.2019.01.005

    11. [11]

      CHOI Y H, JANG Y J, PARK H, KIM W Y, LEE Y H, CHOI S H, LEE J S. Carbon dioxide Fischer-Tropsch synthesis:A new path to carbon-neutral fuels[J]. Appl Catal B:Environ, 2017,202:605-610. doi: 10.1016/j.apcatb.2016.09.072

    12. [12]

      LI S Z, LI A W, KRISHNAMOORTHY S, IGLESIA E. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Catal Lett, 2001,77(4):197-205.  

    13. [13]

      WANG H L, YANG Y, XU J, WANG H, DING M Y, LI Y W. Study of bimetallic interactions and promoter effects of FeZn, FeMn and FeCr Fischer-Tropsch synthesis catalysts[J]. J Mol Catal A:Chem, 2010,326(1):29-40.  

    14. [14]

      LIU X M, LU M, YAN Z F, BELTRAMINI J. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2[J]. Ind Eng Chem Res, 2003,42(25):6518-6530. doi: 10.1021/ie020979s

    15. [15]

      SHIDO T, IWASSAWA Y. Reactant-promoted reaction mechanism for water-gas shift reaction on ZnO, as the genesis of surface catalysis[J]. J Catal, 1991,129(2):343-355.  

    16. [16]

      MASAHIRO S, WU J G, KAZUMI T, ISAO T, KAZUHISA M. Effects of ZnO contained in supported Cu-based catalysts on their activities for several reactions[J]. Catal Lett, 2002,83(1/2):1-4. doi: 10.1023/A:1020693226903

    17. [17]

      KOOHSARYAN E, ANBIA M. Nanosized and hierarchical zeolites:A short review[J]. Chin J Catal, 2016,37(4):447-467.  

    18. [18]

      ZHANG Li-li, YANG Juan, ZHANG Wei-guang, LU Lu-de, YANG Xu-jie, WANG Xin. Preparation of ultrafine K2La2Ti3O10 by soft chemistry method at low temperature and its exfoliation behavior[J]. Chin J Appl Chem, 2005,22(1):64-66.  

    19. [19]

      WU Da-xiong, ZHU Hai-tao, SUN Kai. Exfoliation and photocatalytic activity of layered K-Fe-Ti oxide[J]. New Chem Mater, 2009,37(9):56-57. doi: 10.3969/j.issn.1006-3536.2009.09.018

    20. [20]

      WANG S R, ZHANG J X, YANG J D, GAO X L. Spinel ZnFe2O4 nanoparticle-decorated rod-like ZnO nanohetero structures for enhanced gas sensing performances[J]. Rsc Adv, 2015,5(13):10048-10057. doi: 10.1039/C4RA14033H

    21. [21]

      LU Y E, YAN Q G, HAN J, CAO B B, STREET J, YU F. Fischer-Tropsch synthesis of olefin-rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst[J]. Fuel, 2017,193:369-384. doi: 10.1016/j.fuel.2016.12.061

    22. [22]

      ZHANG Jian-li, WANG Xu, Ma Li-ping, YU Xu-fei, MA Qing-xiang, FAN Su-bing, ZHAO Tian-sheng. Preparation of layered K/Mg-Fe-Al catalysts and its catalytic performances in CO hydrogenation[J]. J Fuel Chem Technol, 2017,45(12):1489-1498. doi: 10.3969/j.issn.0253-2409.2017.12.011 

    23. [23]

      LI Z L, WANG J J, QU Y Z, LIU H L. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catal, 2017,7:8544-8548. doi: 10.1021/acscatal.7b03251

    24. [24]

      ZHANG C H, YANG Y, TENG B T, LI T, ZHENG H, XIANG H, LI Y. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper[J]. J Catal, 2006,237(2):405-415.  

    25. [25]

      LIANG M S, KANG W K, XIE K C. Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique[J]. J Nat Gas Chem, 2009,18(1):110-113. doi: 10.1016/S1003-9953(08)60073-0

    26. [26]

      GUO Wei, GAO Wen-gui, WANG Hua, TIAN Jun-jie, HAN Chong, QIN Zhi-qiang. Effect of Fe addition on Cu/Zn/ZrO2 catalyst for hydrogenation of carbon dioxide to higher alcohol[J]. Mater Rev, 2013,27(20):44-47.  

    27. [27]

      MAZAN M O, MARRERO-JEREZ J, SOLDATI A, NÚÑEZ P, LARRONDO S A. Fe-doped ceria nanopowders synthesized by freeze-drying precursor method for electrocatalytic applications[J]. Int J Hydrogen Energy, 2015,40(10):3981-3989. doi: 10.1016/j.ijhydene.2015.01.006

    28. [28]

      MA Li-ping, ZHANG Jian-li, MA Qing-xiang, FAN Su-bing, ZHAO Tian-sheng. Direct synthesis of light olefins from CO hydrogenation over K/MgFeZn-HTLcs catalysts[J]. J Fuel Chem Technol, 2016,44(4):449-456. doi: 10.3969/j.issn.0253-2409.2016.04.009 

    29. [29]

      DING M Y, YANG Y, LI Y W, WANG T J, MA L L, WU C Z. Impact of H2/CO ratios on phase and performance of Mn-modified Fe-based Fischer-Tropsch synthesis catalyst[J]. Appl Energy, 2013,112(4):1241-1246.  

    30. [30]

      SUO H Y, WANG S G, ZHANG C H, XU J, WU B, YANG Y, XIANG H W, LI Y W. Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts[J]. J Catal, 2012,286(2):111-123.  

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    15. [15]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    19. [19]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    20. [20]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

Metrics
  • PDF Downloads(9)
  • Abstract views(873)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return