Preparation of layered K-Fe-Zn-Ti catalyst and its performance in the hydrogenation of carbon dioxide to light olefins
- Corresponding author: GAO Xin-hua, gxh@nxu.edu.cn ZHANG Jian-li, zhangjl@nxu.edu.cn
Citation:
WU Da-kai, WANG Xu, GAO Xin-hua, MA Qing-xiang, ZHANG Jian-li, FAN Su-bing, ZHAO Tian-sheng. Preparation of layered K-Fe-Zn-Ti catalyst and its performance in the hydrogenation of carbon dioxide to light olefins[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(8): 949-956.
WANG W, WANG S P, MA X B, GONG J L. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chem Soc Rev, 2011,40(7):3703-3727. doi: 10.1039/c1cs15008a
WANG J J, YOU Z Y, ZHANG Q H, DENG W P, WANG Y. Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts[J]. Catal Today, 2013,215(41):186-193.
WEI J, GE Q J, YAO R W, WEN Z Y, FANG C Y, GUO L S, XU H Y, SUN J. Directly converting CO2 into a gasoline fuel[J]. Nat Commun, 2017,815174. doi: 10.1038/ncomms15174
ROHDE M P, UNRUH D, SCHAUB G. Membrane application in Fischer-Tropsch synthesis to enhance CO2 Hydrogenation[J]. Ind Eng Chem Res, 2005,44(25):9653-9658. doi: 10.1021/ie050289z
SONG C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing[J]. Catal Today, 2006,115(1):2-32.
PRASAD P S S, BAE J W, JUN K W, LEE K W. Fischer-Tropsch synthesis by carbon dioxide hydrogenation on Fe-based catalysts[J]. Catal Surv Asia, 2008,12(3):170-183.
ZHANG Juan, CHEN Jian-gang, CHEN Cong-biao, WANG Zhan-xiu, WANG Jun-gang, SUN Yu-han. Secondary reaction of olefin over Co-based catalyst for Fischer-Tropsch synthesis[J]. Petrochem Technol, 2010,39(8):855-860.
GUO L S, SUN J, JI X W, WEI J, WEN Z Y, YAO R W, XU H Y, QE Q J. Directly converting carbon dioxide to linearα-olefins on bio-promoted catalysts[J]. Commun Chem, 2018,111. doi: 10.1038/s42004-018-0012-4
TU Jun-ling, XU Yong-jun, DING Ming-yue, WANG Tie-jun, WANG Long-long, WANG Min-long. Preparation of nano-structured Fe3O4 catalysts and their performance in Fischer-Tropsch synthesis[J]. J Fuel Chem Technol, 2015,43(7):839-845. doi: 10.3969/j.issn.0253-2409.2015.07.008
WANG X, WU D K, ZHANG J L, GAO X H, MA Q X, FAN S B, ZAHO T S. Highly selective conversion of CO2 to light olefins via Fischer-Tropsch synthesis over stable layered K-Fe-Ti catalysts[J]. Appl Catal A:Gen, 2019,573:32-40. doi: 10.1016/j.apcata.2019.01.005
CHOI Y H, JANG Y J, PARK H, KIM W Y, LEE Y H, CHOI S H, LEE J S. Carbon dioxide Fischer-Tropsch synthesis:A new path to carbon-neutral fuels[J]. Appl Catal B:Environ, 2017,202:605-610. doi: 10.1016/j.apcatb.2016.09.072
LI S Z, LI A W, KRISHNAMOORTHY S, IGLESIA E. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Catal Lett, 2001,77(4):197-205.
WANG H L, YANG Y, XU J, WANG H, DING M Y, LI Y W. Study of bimetallic interactions and promoter effects of FeZn, FeMn and FeCr Fischer-Tropsch synthesis catalysts[J]. J Mol Catal A:Chem, 2010,326(1):29-40.
LIU X M, LU M, YAN Z F, BELTRAMINI J. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2[J]. Ind Eng Chem Res, 2003,42(25):6518-6530. doi: 10.1021/ie020979s
SHIDO T, IWASSAWA Y. Reactant-promoted reaction mechanism for water-gas shift reaction on ZnO, as the genesis of surface catalysis[J]. J Catal, 1991,129(2):343-355.
MASAHIRO S, WU J G, KAZUMI T, ISAO T, KAZUHISA M. Effects of ZnO contained in supported Cu-based catalysts on their activities for several reactions[J]. Catal Lett, 2002,83(1/2):1-4. doi: 10.1023/A:1020693226903
KOOHSARYAN E, ANBIA M. Nanosized and hierarchical zeolites:A short review[J]. Chin J Catal, 2016,37(4):447-467.
ZHANG Li-li, YANG Juan, ZHANG Wei-guang, LU Lu-de, YANG Xu-jie, WANG Xin. Preparation of ultrafine K2La2Ti3O10 by soft chemistry method at low temperature and its exfoliation behavior[J]. Chin J Appl Chem, 2005,22(1):64-66.
WU Da-xiong, ZHU Hai-tao, SUN Kai. Exfoliation and photocatalytic activity of layered K-Fe-Ti oxide[J]. New Chem Mater, 2009,37(9):56-57. doi: 10.3969/j.issn.1006-3536.2009.09.018
WANG S R, ZHANG J X, YANG J D, GAO X L. Spinel ZnFe2O4 nanoparticle-decorated rod-like ZnO nanohetero structures for enhanced gas sensing performances[J]. Rsc Adv, 2015,5(13):10048-10057. doi: 10.1039/C4RA14033H
LU Y E, YAN Q G, HAN J, CAO B B, STREET J, YU F. Fischer-Tropsch synthesis of olefin-rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst[J]. Fuel, 2017,193:369-384. doi: 10.1016/j.fuel.2016.12.061
ZHANG Jian-li, WANG Xu, Ma Li-ping, YU Xu-fei, MA Qing-xiang, FAN Su-bing, ZHAO Tian-sheng. Preparation of layered K/Mg-Fe-Al catalysts and its catalytic performances in CO hydrogenation[J]. J Fuel Chem Technol, 2017,45(12):1489-1498. doi: 10.3969/j.issn.0253-2409.2017.12.011
LI Z L, WANG J J, QU Y Z, LIU H L. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catal, 2017,7:8544-8548. doi: 10.1021/acscatal.7b03251
ZHANG C H, YANG Y, TENG B T, LI T, ZHENG H, XIANG H, LI Y. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper[J]. J Catal, 2006,237(2):405-415.
LIANG M S, KANG W K, XIE K C. Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique[J]. J Nat Gas Chem, 2009,18(1):110-113. doi: 10.1016/S1003-9953(08)60073-0
GUO Wei, GAO Wen-gui, WANG Hua, TIAN Jun-jie, HAN Chong, QIN Zhi-qiang. Effect of Fe addition on Cu/Zn/ZrO2 catalyst for hydrogenation of carbon dioxide to higher alcohol[J]. Mater Rev, 2013,27(20):44-47.
MAZAN M O, MARRERO-JEREZ J, SOLDATI A, NÚÑEZ P, LARRONDO S A. Fe-doped ceria nanopowders synthesized by freeze-drying precursor method for electrocatalytic applications[J]. Int J Hydrogen Energy, 2015,40(10):3981-3989. doi: 10.1016/j.ijhydene.2015.01.006
MA Li-ping, ZHANG Jian-li, MA Qing-xiang, FAN Su-bing, ZHAO Tian-sheng. Direct synthesis of light olefins from CO hydrogenation over K/MgFeZn-HTLcs catalysts[J]. J Fuel Chem Technol, 2016,44(4):449-456. doi: 10.3969/j.issn.0253-2409.2016.04.009
DING M Y, YANG Y, LI Y W, WANG T J, MA L L, WU C Z. Impact of H2/CO ratios on phase and performance of Mn-modified Fe-based Fischer-Tropsch synthesis catalyst[J]. Appl Energy, 2013,112(4):1241-1246.
SUO H Y, WANG S G, ZHANG C H, XU J, WU B, YANG Y, XIANG H W, LI Y W. Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts[J]. J Catal, 2012,286(2):111-123.
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Hongling Yuan , Jialin Xie , Jiawei Wang , Jixiang Zhao , Jiayan Liu , Qing Feng , Wei Qi , Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Xunzhang Fan , Yuanjin Zhao , Shufang Luo , Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
Lilong Gao , Yuhao Zhai , Dongdong Zhang , Linjun Huang , Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143
(a): 0.8K-2.4Fe-1.3Ti; (b): 0.8K-2.0Fe-0.4Zn-1.3Ti; (c): 0.8K-1.92Fe-0.48Zn-1.3Ti; (d): 0.8K-1.8Fe-0.6Zn-1.3Ti; (e): 0.8K-1.6Fe-0.8Zn-1.3Ti
(a): fresh sample; (b): used sample