Citation: Hu Daihua, Chen Wang. Advances in Syntheses and Biological Activities of Vitamin D2 Analogues[J]. Chemistry, ;2017, 80(8): 715-724. shu

Advances in Syntheses and Biological Activities of Vitamin D2 Analogues

  • Received Date: 19 December 2016
    Accepted Date: 8 April 2017

Figures(1)

  • 1α, 25-Dihydroxyvitamin D2(1α, 25-(OH)2-D2; 125D2) is the active metabolite form of vitamin D2, and 1α, 25-dihydroxyvitamin D3(1α, 25-(OH)2-D3; 125D) is the most active metabolite of vitamin D3. The biological activity of 125D2 and 125D is similar, but the therapeutic application of 125D is limited by induction of hypercalcemia. Vitamin D2 and analogues are thought to be generally less toxic than the respective vitamin D3 compounds. This article reviews the recent development of two 125D2 analogues (doxercalciferol and paricalcitol) showed good clinical effect in organic syntheses, and new research in the design and syntheses of the structural modifications in the side chain, 19-nor, C3-substituted in A ring, and nonadeuterated isotope labeling 125D2 analogues, and the relation between the structure and the biological activities, aimed at guiding significance to the syntheses and clinical development of new selective biological vitamin D2 analogues.
  • 加载中
    1. [1]

      G Jones, H K Schnoes, H F De Luca. Biochemistry, 1975, 14(6):1250~1256. 

    2. [2]

      H F DeLuca, L A Plum, M Clagett-Dame. J. Steroid. Biochem., 2007, 103(3):263~268. 

    3. [3]

      N Urushino, K Yasuda, S Ikushiro et al. Biochem. Biophys. Res. Commun., 2009, 384(2):144~148. 

    4. [4]

      G Jones, L A Baxter, H F De Luca et al. Biochemistry, 1976, 15(3):713~716. 

    5. [5]

    6. [6]

      M Chodyński, J Wietrzyk, E Marcinkowska et al. Steroids, 2002, 67(9):789~798. 

    7. [7]

      Y Tachibana. Bull. Chem. Soc. Jpn., 1988, 61(11):3915~3918. 

    8. [8]

       

    9. [9]

      B G Anderson, W E Bauta, Jr W R Cantrell. Org. Proc. Res. Dev., 2012, 16(5):967~975. 

    10. [10]

    11. [11]

      Y Ji, X Wang, R J Donnelly et al. J. Cell. Physiol., 2002, 191(2):198~207. 

    12. [12]

      B Filip, M Milczarek, J Wietrzyk et al. J. Steroid. Biochem., 2010, 121(1):399~402. 

    13. [13]

      S Nadkarni, M Chodynski, K Krajewski et al. J. Steroid. Biochem., 2016, 164:45~49. 

    14. [14]

      A Piotrowska, J Wierzbicka, S Nadkarni et al. Int. J. Mol. Sci., 2016, 17(1):76. 

    15. [15]

      M Chodyński, J Wietrzyk, E Marcinkowska et al. Steroids, 2002, 67(9):789~798. 

    16. [16]

      J Wietrzyk, D Nevozhay, M Milczarek et al. Cancer. Chemoth. Pharm., 2008, 62(5):787~797. 

    17. [17]

      H Baurska, A Klopot, M Kielbinski et al. J. Steroid. Biochem., 2011, 126(1):46~54. 

    18. [18]

      N R Bolla, A Corcoran, K Yasuda et al. J. Steroid. Biochem., 2016, 164:50~55.

    19. [19]

      Z Gándara, M Pérez, X Pérez-García et al. Tetrahed. Lett., 2009, 50(34):4874~4877.

    20. [20]

      Z Gándara, M Pérez, D G Salomón et al. Bioorg. Med. Chem. Lett., 2012, 22(19):6276~6279.

    21. [21]

      S Vinhas, S Vázquez, J E Rodríguez-Borges et al. J. Steroid. Biochem., 2016 

    22. [22]

       

    23. [23]

       

    24. [24]

      L Li, L Yue, J Xue et al. Chin. Sci. Bull., 2012, 57(14):1616~1619. 

    25. [25]

      A Toyoda, H Nagai, T Yamada et al. Tetrahedron, 2009, 65(48):10002~10008.

    26. [26]

      R Samala, S Sharma, M K Basu et al. Tetrahed. Lett., 2016, 57(12):1309~1312.

    27. [27]

      A Pietraszek, M Malińska, M Chodyński et al. Steroids, 2013, 78(10):1003~1014. 

    28. [28]

      M Nachliely, E Sharony, A Kutner et al. J. Steroid. Biochem., 2016, 164:59~65. 

    29. [29]

      J Grote, S Gayda. Tetrahed. Lett., 2014, 55(43):5955~5959. 

    30. [30]

      R Sigüeiro, R Otero, P González-Berdullas et al. J. Steroid. Biochem., 2015, 148:31~33.

    31. [31]

    32. [32]

      R Bouillon, W H Okamura, A W Norman. Endocr. Rev., 1995, 16(2):200~257. 

    33. [33]

      R Sigüeiro, A Álvarez, R Otero et al. J. Steroid. Biochem., 2014, 144:204~206.

  • 加载中
    1. [1]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    2. [2]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    7. [7]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    8. [8]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    9. [9]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    10. [10]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    11. [11]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    12. [12]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    13. [13]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    14. [14]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    15. [15]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    16. [16]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    17. [17]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    20. [20]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

Metrics
  • PDF Downloads(16)
  • Abstract views(2913)
  • HTML views(314)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return