Citation: Li Yuhui, Yin Fangfei, Li Jiang, Li Lanying, Liu Gang. Application of Framework Nucleic Acids in Protein Precise Arrangement[J]. Chemistry, ;2020, 83(9): 770-776. shu

Application of Framework Nucleic Acids in Protein Precise Arrangement

  • Corresponding author: Liu Gang, liug@simt.com.cn
  • Received Date: 15 January 2020
    Accepted Date: 22 April 2020

Figures(4)

  • In addition to being the carrier of genetic information, DNA has attracted wide interest as a new class of material in the synthetic realm. The exploitation of the precise and programmable Watson-Crick base pairing of DNA or RNA has led to the development of exquisite nucleic acid nanostructures from one to three dimensions. Advances in computer-aided tools have also facilitated the automated design of DNA nanostructures with various sizes and shapes. The "framework nucleic acids (FNAs)" constructed in recent years provide a new method for precise organization of biological macromolecules with nanometer precision. The intrinsic biological properties and tailorable functionalities of FNAs hold great promise for physical, chemical, and biological applications. This review elaborates the concept of precise self-assembled FNAs, and summarizes the recent advances of FNAs in the field of protein precise arrangement. The unique features of FNAs that benefit the arrangement of proteins and their performance are highlighted. The challenges and opportunities of this field are also discussed.
  • 加载中
    1. [1]

      Serganov A, Nudler E. Cell, 2013, 152: 17~24. 

    2. [2]

      Forster A C, Symons R H. Cell, 1987, 49: 211~220. 

    3. [3]

      Sen D, Gilbert W. Nature, 1988, 334: 364~366. 

    4. [4]

       

    5. [5]

      Zeraati M, Langley D B, Schofield P, et al. Nat. Chem., 2018, 10: 631~637. 

    6. [6]

      Seeman N C. J. Theor. Biol., 1982, 99: 237~247. 

    7. [7]

      Kallenbach N R, Ma R I, Seeman N C. Nature, 1983, 305: 829~831. 

    8. [8]

      Kato T, Goodman R P, Erben C M, et al. Nano Lett., 2009, 9: 2747~2750. 

    9. [9]

      Liu X, Zhang F, Jing X, et al. Nature, 2018, 559: 593~598. 

    10. [10]

      Rothemund P W K. Nature, 2006, 440: 297~302. 

    11. [11]

      Cutler J I, Auyeung E, Mirkin C A. J. Am. Chem. Soc., 2012, 134: 1376~1391. 

    12. [12]

       

    13. [13]

      Yang Y R, Liu Y, Yan H. Bioconjug. Chem., 2015, 26: 1381~1395. 

    14. [14]

      Deng M, Li M, Li F, et al. ACS Mater. Lett., 2019, 1: 671~676. 

    15. [15]

      Ge Z, Gu H, Li Q, et al. J. Am. Chem. Soc., 2018, 140: 17808~17819. 

    16. [16]

      Lu N, Pei H, Ge Z, et al. J. Am. Chem. Soc., 2012, 134: 13148~13151. 

    17. [17]

      Ye D, Zuo X, Fan C. Ann. Rev. Anal. Chem., 2018, 11: 171~195. 

    18. [18]

      Yang F, Zuo X, Fan C, et al. Natl. Sci. Rev., 2018, 5: 740~755. 

    19. [19]

    20. [20]

      Zhang H, Chao J, Pan D, et al. Nat. Commun., 2017, 8: 14738. 

    21. [21]

      Chao J, Wang J, Wang F, et al. Nat. Mater., 2019, 18: 273~279. 

    22. [22]

      Qi X, Zhang F, Su Z, et al. Nat. Commun., 2018, 9: 4579. 

    23. [23]

      Zhang F, Jiang S, Wu S, et al. Nat. Nanotechnol., 2015, 10: 779~784. 

    24. [24]

      Liu W, Halverson J, Tian Y, et al. Nat. Chem., 2016, 8: 867~873. 

    25. [25]

      Li J, Pei H, Zhu B, et al. ACS Nano, 2011, 5: 8783~8789. 

    26. [26]

      Walsh A S, Yin H, Erben C M, et al. ACS Nano, 2011, 5: 5427~5432. 

    27. [27]

      Jiang D, Ge Z, Im H J, et al. Nat. Biomed. Eng., 2018, 2: 865~877. 

    28. [28]

      He L, Lu D, Liang H, et al. J. Am. Chem. Soc., 2018, 140: 258~263. 

    29. [29]

      Zhu G, Zheng J, Song E, et al. PNAS, 2013, 110:7998~8003. 

    30. [30]

      Hao Y Y, Liu L, Zhang L H, et al. Nucl. Sci. Tech., 2018, 29: 83~89. 

    31. [31]

      Chen Q, Liu H, Lee W, et al. Lab Chip, 2013, 13: 3351~3354. 

    32. [32]

      Freeman R, Stephanopoulos N, Alvarez Z, et al. Nat. Commun., 2017, 8: 15982. 

    33. [33]

      Erkelenz M, Kuo C H, Niemeyer C M. J. Am. Chem. Soc., 2011, 133: 16111~16118. 

    34. [34]

      McMillan J R, Mirkin C A. J. Am. Chem. Soc., 2018, 140: 6776~6779. 

    35. [35]

      Derr N D, Goodman B S, Jungmann R, et al. Science, 2012, 338: 662~665. 

    36. [36]

      Wilner O I, Weizmann Y, Gill R, et al. Nat. Nanotechnol., 2009, 4: 249~254. 

    37. [37]

      Fu J, Liu M, Liu Y, et al. J. Am. Chem. Soc., 2012, 134: 5516~5519. 

    38. [38]

      Fu J, Yang Y R, Johnson-Buck A, et al. Nat. Nanotechnol., 2014, 9:531~536. 

    39. [39]

      Nielsen T B, Thomsen R P, Mortensen M R, et al. Angew. Chem. Int. Ed., 2019, 58: 9068~9072. 

    40. [40]

      Xin L, Zhou C, Yang Z, et al. Small, 2013, 9: 3088~3091. 

    41. [41]

      Liu M, Fu J, Hejesen C, et al. Nat. Commun., 2013, 4: 2127. 

    42. [42]

      Zhao Z, Fu J, Dhakal S, et al. Nat. Commun., 2016, 7: 10619. 

    43. [43]

      Rusling D A, Chandrasekaran A R, Ohayon Y P, et al. Angew. Chem. Int. Ed., 2014, 53: 3979~3982. 

    44. [44]

      Douglas S M, Bachelet I, Church G M. Science, 2012, 335: 831~834. 

    45. [45]

      Li S, Jiang Q, Liu S, et al. Nat. Biotechnol., 2018, 36: 258~264. 

    46. [46]

      Xu Y, Jiang S, Simmons C R, et al. ACS Nano, 2019, 13: 3545~3554. 

  • 加载中
    1. [1]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    2. [2]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    3. [3]

      Leyuan Sun Xiaoyu Xie Fangfang Chen . 敦煌壁画的“DNA变身”. University Chemistry, 2025, 40(8): 211-217. doi: 10.12461/PKU.DXHX202410079

    4. [4]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    5. [5]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    6. [6]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    7. [7]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    8. [8]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    9. [9]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    10. [10]

      Xiaolong LiChangjiang LiChaopeng ShiJiarun WangBei YanXianjin XiaoTongbo Wu . CRISPR-Cas systems in DNA functional circuits: Strategies, challenges, prospects. Chinese Chemical Letters, 2025, 36(7): 110507-. doi: 10.1016/j.cclet.2024.110507

    11. [11]

      Le YangHongye WeiZhihe QingLinlin Wu . AuNP@DNA nanoflares: Preparation and application in bioanalysis and biomedicine. Chinese Chemical Letters, 2025, 36(8): 110524-. doi: 10.1016/j.cclet.2024.110524

    12. [12]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    13. [13]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    14. [14]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    15. [15]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    16. [16]

      Fanghua ZhangYuyan LiHongyan ZhangWendong LiuZhe HaoMingzheng ShaoRuizhong ZhangXiyan LiLibing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848

    17. [17]

      Kun LiuYulin CongXiongfeng LuoMeicun YaoZhiyong XieHao Li . Utilizing bivalent aptamers as first DNA agonist to activate RTKs heterodimer of different families. Chinese Chemical Letters, 2025, 36(1): 109839-. doi: 10.1016/j.cclet.2024.109839

    18. [18]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    19. [19]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    20. [20]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

Metrics
  • PDF Downloads(33)
  • Abstract views(2371)
  • HTML views(667)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return