Citation: WANG Liang-liang, WANG Ming-hong, FEI Zhao-yang, ZHANG Zhu-xiu, CHEN Xian, TANG Ji-hai, CUI Mi-fen, QIAO Xu. Preparation of amorphous MnOx/TiO2 catalyst and its performance in low temperature NH3-SCR[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(8): 993-1000. shu

Preparation of amorphous MnOx/TiO2 catalyst and its performance in low temperature NH3-SCR

  • Corresponding author: FEI Zhao-yang, zhaoyangfei@njtech.edu.cn QIAO Xu, qct@njtech.edu.cn
  • Received Date: 16 May 2017
    Revised Date: 26 June 2017

    Fund Project: the National Natural Science Foundation of China 21306089Innovation Foundation of Jiangsu Province SJLX15-0347The project was supported by the National Natural Science Foundation of China (21306089) and Innovation Foundation of Jiangsu Province (SJLX15-0347)

Figures(9)

  • MnOx/TiO2 catalysts were prepared by spontaneous deposition, co-precipitation and impregnation methods, respectively. The structure and properties of the MnOx/TiO2 catalysts were studied by means of XRD, TEM, N2 adsorption-desorption, XPS, H2-TPR and NH3-TPD. The activity of the catalysts in the selective catalytic reduction of NO was investigated. The results showed that the MnOx/TiO2(s) catalyst prepared by the spontaneous deposition method had a completely amorphous structure and a strong interaction between Mn and Ti, showed stronger redox ability than other two catalysts. In addition, the MnOx/TiO2(s) catalyst exhibited larger surface area, more surface acid sites, which were beneficial to NH3 adsorption and activation, as well as the high Mn4+ and adsorbed oxygen content of catalyst surface, which could greatly enhance the activity for NO oxidation to NO2, as a result, facilitating the "fast-SCR" reaction. Thus, a superior denitrification activity was exhibited over MnOx/TiO2(s) catalyst. For MnOx/TiO2(s) catalyst, the conversion of NO reached 92.8% at 150 ℃ and retained over 90% in the range of 150-350 ℃. Moreover, the MnOx/TiO2(s) catalyst also showed strong resistance to H2O and SO2 poisoning.
  • 加载中
    1. [1]

      HU H, CAI S, LI H , HUANG L, SHI L, ZHANG D. Mechanistic aspects of deNOx processing over TiO2 supported Co-Mn oxide catalysts: Structure-activity relationships and in situ DRIFTs analysis[J]. ACS Catal, 2015,5(10):6069-6077. doi: 10.1021/acscatal.5b01039

    2. [2]

      LU X, SONG C, CHANG C C, TENG Y, TONG Z, TANG X. Manganese oxides supported on TiO2-Graphene nanocomposite catalysts for selective catalytic reduction of NOx with NH3 at low temperature[J]. Ind Eng Chem Res, 2014,53(29):11601-11610. doi: 10.1021/ie5016969

    3. [3]

      ZHU Bin, FEI Zhao-yang, CHEN Xian, TANG Ji-Hai, CUI Mi-fen, QIAO Xu. Synergetic effect of Cu-Fe composite oxides supported on Al-PILC for SCR of NO with NH3[J]. J Fuel Chem Technol, 2014,42(9):1102-1110.  

    4. [4]

      POURKHALIL M, MOGHADDAM A Z, RASHIDI A, TOWFIGHI J, MORTAZAVI Y. Preparation of highly active manganese oxides supported on functionalized MWNTs for low temperature NOx reduction with NH3[J]. Appl Surf Sci, 2013,279(2):250-259.  

    5. [5]

      TANG F, XU B, SHI H. The poisoning effect of Na+ and Ca2+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3[J]. Appl Catal B: Environ, 2010,94(1/2):71-76.  

    6. [6]

      YANG J, YANG Q, SUN J, LIU Q C, ZHAO D. Effects of mercury oxidation on V2O5-WO3/TiO2 catalyst properties in NH3-SCR process[J]. Catal Commun, 2015,59:147-156.  

    7. [7]

      MENG D, ZHAN W, GUO Y, GUO Y, WANG L, LU G. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: the promotional role of Sm and its catalytic performance[J]. ACS Catal, 2015,5(10):5973-5983. doi: 10.1021/acscatal.5b00747

    8. [8]

      MU W, ZHU J, ZHANG S, GUO Y, SU L, LI X. Novel proposition on mechanism aspects over Fe-Mn/ZSM-5 catalyst for NH3-SCR of NOx at low temperature: rate and direction of multifunctional electron-transfer-bridge and in-situ DRIFTs analysis[J]. Catal Sci Technol, 2016,6(20):7532-7548. doi: 10.1039/C6CY01510G

    9. [9]

      JIANG B Q, LIU Y, WU Z B. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods[J]. J Hazard Mater, 2009,162:1249-1254. doi: 10.1016/j.jhazmat.2008.06.013

    10. [10]

      ZHANG Y, ZHAO X, XU H, SHEN K, ZHOU C, JIN B, SUN K. Novel ultrasonic-modified MnOx/TiO2 for low-temperature selective catalytic reduction (SCR) of NO with ammonia[J]. J Colloid Interface Sci, 2011,36(1):212-218.  

    11. [11]

      PARK E, KIM M, JUNG H, CHIN S, JURNG J. Effect of sulfur on Mn/Ti catalysts prepared using chemical vapor condensation (CVC) for low-temperature NO reduction[J]. ACS Catal, 2013,3(7):1518-1525. doi: 10.1021/cs3007846

    12. [12]

      LIU Jun, WANG Liang-liang, FEI Zhao-yang, CHEN Xian, TANG Ji-hai, CUI Mi-fen, QIAO Xu. Structure and properties of amorphous CeO2@TiO2catalyst and its performance in the selective catalytic reduction of NO with NH3[J]. J Fuel Chem Technol, 2016,44(8):954-960.  

    13. [13]

      ZHANG Z P, CHEN L Q, LI Z B. Activity and SO2 resistance of amorphous CeaTiOx catalysts for the selective catalytic reduction of NO with NH3: In-situ DRIFT studies[J]. Catal Sci Technol, 2016,6(19):7151-7162. doi: 10.1039/C6CY00475J

    14. [14]

      LI P, XIN Y, LI Q, WANG Z, ZHANG Z, ZHENG L. Ce-Ti amorphous oxides for selective catalytic reduction of NO with NH3: Confirmation of Ce-O-Ti Active Sites[J]. Environ Sci Technol, 2012,46:9600-9605. doi: 10.1021/es301661r

    15. [15]

      CHEN X, XU X, FEI Z, XIE X, Lou J, TANG J, CUI M, QIAO X. CeO2 nanodots embedded in a porous silica matrix as an active yet durable catalyst for HCl oxidation[J]. Catal Sci Technol, 2016,6(13):5116-5123. doi: 10.1039/C5CY02300A

    16. [16]

      FANG Z T, LIN T, XU H D, WU G X, CHEN Y Q. Novel promoting effects of cerium on the activities of NOx reduction by NH3 over TiO2-SiO2-WO3 monolith catalysts[J]. J Rare Earth, 2014,32(10):952-959. doi: 10.1016/S1002-0721(14)60168-X

    17. [17]

      PAN S, LUO H, LI L, WEI Z, HUANG B. H2O and SO2 deactivation mechanism of MnOx/MWCNTs for low-temperature SCR of NOx with NH3[J]. J Mol Catal A: Chem, 2013,377:154-161. doi: 10.1016/j.molcata.2013.05.009

    18. [18]

      FANG C, ZHANG D, SHI L, GAO R, LI H, YE L. Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3[J]. Catal Sci Technol, 2012,3(3):803-811.  

    19. [19]

      LIU F, HE H, DING Y, ZHANG C. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B: Environ, 2009,93(1):3760-3769.  

    20. [20]

      SUN P, GUO R T, LIU S M, WANG S X, PAN W G, LI M Y. The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu[J]. Appl Catal A: Gen, 2017,531:129-138. doi: 10.1016/j.apcata.2016.10.027

    21. [21]

      WANG Ming-hong, WANG Liang-liang, LIU Jun, FEI Zhao-yang, CHEN Xian, TANG Ji-hai, CUI Mi-fen, QIAO Xu. Promoting effect of transition metal on low-temperature deNOx activity of CeO2@TiO2 catalyst for selective catalytic reduction[J]. J Fuel Chem Technol, 2017,45(4):497-504.  

    22. [22]

      ETTIREDDY P R, ETTIREDDY N, MAMEDOV S, BOOLCHAND P, SMIRNIOTIS P G. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3[J]. Appl Catal B: Environ, 2007,76(1/2):123-134.  

    23. [23]

      FANG D, XIE J, HUA H, HU Y, FENG H, FU Z. Identification of MnOx species and Mn valence states in MnOx/TiO2 catalysts for low temperature SCR[J]. Chem Eng J, 2015,271(1):23-30.  

    24. [24]

      ARAKAWA K, MATSUDA S, KINOSHITA H. SO2 poisoning mechanism of NOx selective reduction catalysts[J]. Appl Surf Sci, 1997,121/122:382-386. doi: 10.1016/S0169-4332(97)00338-3

    25. [25]

      ARAMEDNDIA M A, BORAU V, JIMENEZ C. Synthesis and characterization of ZrO2 as an acid-base catalyst dehydration-dehydrogenation of propan-2-ol[J]. J Chem Soc, 1997,93(7):1431-1438.  

    26. [26]

      SUN M T, HUANG B C, M J W. Morphological effects of manganese dioxide on catalytic reactions for low-temperature NH3-SCR[J]. Acta Phys Chim Sin, 2016,32(6):1501-1510.  

    27. [27]

      VÉLEZ R P, ELLMERS I, HUANG H, BENTRUP U, SCHVNEMANN V, GRVNERT W. Identifying active sites for fast NH3-SCR of NO/NO2 mixtures over Fe-ZSM-5 by operando EPR and UV-vis spectroscopy[J]. J Catal, 2014,316(3):103-111.  

    28. [28]

      LIU F, HE H, ZHANG C, FENG Z, ZHENG L, XIE Y. Selective catalytic reduction of NO with NH3 over iron titanate catalyst: Catalytic performance and characterization[J]. Appl Catal B: Environ, 2010,96(3/4):408-420.  

    29. [29]

      LIU C, SHI J W, GAO C, NIU C M. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review[J]. Appl Catal A: Gen, 2016,522:54-69. doi: 10.1016/j.apcata.2016.04.023

    30. [30]

      YU J, GUO F, WANG Y, ZHU J, LIU Y, SU F. Sulfur poisoning resistant mesoporous Mn-based catalyst for low-temperature SCR of NO with NH3[J]. Appl Catal B: Environ, 2010,95(1/2):160-168.  

  • 加载中
    1. [1]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    2. [2]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    3. [3]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    4. [4]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    5. [5]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    6. [6]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    8. [8]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    9. [9]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    10. [10]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    11. [11]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    12. [12]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    13. [13]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    17. [17]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    18. [18]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    20. [20]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

Metrics
  • PDF Downloads(1)
  • Abstract views(2090)
  • HTML views(240)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return