Citation: Sameh M. K. Aboul-Fotouh, Noha A. K. Aboul-Gheit, Mona A. Naghmash. Dimethylether production on zeolite catalysts activated by Cl-, F- and/or ultrasonication[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(4): 428-436. shu

Dimethylether production on zeolite catalysts activated by Cl-, F- and/or ultrasonication

  • Corresponding author: Sameh M. K. Aboul-Fotouh, samehaboulfotouh@yahoo.com
  • Received Date: 7 November 2015
    Revised Date: 21 January 2016

Figures(13)

  • The chlorinated and fluorinated zeolite catalysts were prepared by the impregnation of zeolites (H-ZSM-5, H-MOR or H-Y) using two halogen precursors (ammonium chloride and ammonium fluoride) in this study. The influence of ultrasonic irradiation was evaluated for optimizing both halogen precursors for production of dimethylether (DME) via methanol dehydration in a fixed bed reactor. The catalysts were characterized by SEM, XRD, BET and NH3-TPD. The reaction conditions were temperatures from 100 to 300 ℃ and a WHSV =15.9 h-1. All halogenated catalysts show higher catalytic activities at all reaction temperatures studied. However, the halogenated zeolite catalysts prepared under ultrasonic irradiation show higher performance for DME formation. The chlorinated zeolite catalysts show higher activity and selectivity for DME production than the respective fluorinated versions.
  • 加载中
    1. [1]

      FLEISCH T H, BASU A, GRADASSI M J, MASIN J G. Dimethyl ether: A fuel for the 21st century[J]. Stud Surf Sci Catal, 1997,107:117-125. doi: 10.1016/S0167-2991(97)80323-0

    2. [2]

      SEMELSBERGER T A, BORUP R L, GREENE H L. Dimethyl ether (DME) as an alternative fuel[J]. J Power Sources, 2006,156(2):497-511. doi: 10.1016/j.jpowsour.2005.05.082

    3. [3]

      VISHWANATHAN V, JUN K W, KIM J W, ROH H S. Vapour phase dehydration of crude methanol to dimethyl ether over Na-modified H-ZSM-5 catalysts[J]. Appl Catal A: Gen, 2004,276(1/2):251-256.  

    4. [4]

      CAI G Y, LIU Z M, SHI R M, HE C Q, YANG L X, SUN C L, CHANG Y J. Light alkenes from syngas via dimethyl ether[J]. Appl Catal A: Gen, 1995,125(1):29-38. doi: 10.1016/0926-860X(94)00291-6

    5. [5]

      XU M T, GOODMAN D W and BHATTACHARYYA A. Catalytic dehydration of methanol to dimethyl ether (DME) over Pd/Cab-O-Sil catalysts[J]. Appl Catal A: Gen, 1997,149(2):303-309. doi: 10.1016/S0926-860X(96)00276-1

    6. [6]

      KIM S D, BAEK S C, LEE Y J, JUN K W, KIM M J, YOO I S. Effect of γ-alumina content on catalytic performance of modified ZSM-5 for dehydration of crude methanol to dimethyl ether[J]. Appl Catal A: Gen, 2006,309(1):139-143. doi: 10.1016/j.apcata.2006.05.008

    7. [7]

      VISHWANATHAN V, ROH H S, KIM J W, JUN K W. Surface properties and catalytic activity of TiO2 ZrO2 mixed oxides in dehydration of methanol to dimethyl ether[J]. Catal Lett, 2004,96:23-28. doi: 10.1023/B:CATL.0000029524.94392.9f

    8. [8]

      FEI J H, HOU Z Y, ZHU B, LOU H, ZHENG X M. Synthesis of dimethyl ether (DME) on modified HY zeolite and modified HY zeolite-supported Cu-Mn-Zn catalysts[J]. Appl Catal A: Gen, 2006,304:49-54. doi: 10.1016/j.apcata.2006.02.019

    9. [9]

      YARIPOUR F, BAGHAEI F, SCHMIDT I, PERREGAARD J. Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts[J]. Catal Commun, 2005,6(2):147-152. doi: 10.1016/j.catcom.2004.11.012

    10. [10]

      KIM S M, LEE Y J, BAE J W, POTDAR H S, JUN K W. Synthesis and characterization of a highly active alumina catalyst for methanol dehydration to dimethyl ether[J]. Appl Catal A: Gen, 2008,348(1):113-120. doi: 10.1016/j.apcata.2008.06.032

    11. [11]

      TANG Q, XU H, ZHENG Y, WANG J, LI H, ZHANG J. Catalytic dehydration of methanol to dimethyl ether over micro-mesoporous ZSM-5/MCM-41 composite molecular sieves[J]. Appl Catal A: Gen, 2012,413.  

    12. [12]

      KESHAVARZ A R, REZAEI M, YARIPOUR F. Preparation of nanocrystalline γ-Al2O3 catalyst using different procedures for methanol dehydration to dimethylether[J]. J Natur Gas Chem, 2011,20(30):334-338.

    13. [13]

      RAOOF F, TAGHIZADEH M, ELIASSI A, YARIPOUR F. Effects of temperature and feed composition on catalytic dehydration of methanol to dimethyl ether over γ-alumina[J]. Fuel, 2008,87(13):2967-2971.  

    14. [14]

      KHOM-IN J, PRASERTHDAM P, PANPRANOT J, MEKASUWANDUMRONG O. Dehydration of methanol to dimethyl ether over nanocrystalline Al2O3with mixed γ-and χ-crystalline phases[J]. Catal Commun, 2008,9(10):1955-1958. doi: 10.1016/j.catcom.2008.03.009

    15. [15]

      MOLLAVALI M, YARIPOUR F, MOHAMMADI-JAM S, ATASHI H. Relationship between surface acidity and activity of solid-acid catalysts in vapour phase dehydration of methanol[J]. Fuel Process Technol, 2009,90(9):1093-1098. doi: 10.1016/j.fuproc.2009.04.018

    16. [16]

      EBEID M F, ALI A, AMIN A, ABOUL-FOTOUH S. Heteropoly acids supported on α-Al2O3 as solid acid catalysts for methanol transformation[J]. Collect Czech Chem Commun, 1993,58:2079-2089. doi: 10.1135/cccc19932079

    17. [17]

      AMIN A, ALI A, ABOUL-FOTOUH S, EBEID E F. Surface studies and nature of active sites of supported heteropolyacids as catalysts in methanol dehydration[J]. Collect Czech Chem Commun, 1994,59:820-832. doi: 10.1135/cccc19940820

    18. [18]

      LIU D, YAO C, ZHANG J, FANG D, CHEN D. Catalytic dehydration of methanol to dimethyl ether over modified γ-Al2O3 catalyst[J]. Fuel, 2011,90(5):1738-1742. doi: 10.1016/j.fuel.2011.01.038

    19. [19]

      JIANG S, HWANG J, JIN T, CAI T, CHO W, BAEK Y, PARK S. Dehydration of methanol to dimethyl ether over ZSM-5 zeolite[J]. Bull Korean Chem Soc, 2004,25:185-189. doi: 10.5012/bkcs.2004.25.2.185

    20. [20]

      SUN KOU M R, MENDIOROZ S, SALERNO P, MUNOZ V. Catalytic activity of pillared clays in methanol conversion[J]. Appl Catal A: Gen, 2003,240(1/2):273-285.  

    21. [21]

      LERTJIAMRATN K, PRASERTHDAM P, ARAI M, PANPRANOT J. Modification of acid properties and catalytic properties of AlPO4 by hydrothermal pretreatment for methanol dehydration to dimethyl ether[J]. Appl Catal A: Gen, 2010,378(1):119-123.

    22. [22]

      YARIPOUR F, BAGHAEI F, SCHMIDT I, PERREGAARD J. Synthesis of dimethyl ether from methanol over aluminium phosphate and silica-titania catalysts[J]. Catal Commun, 2005,6(8):542-549.  

    23. [23]

      ABOUL-FOTOUH S M K, ABOUL-GHEIT N A K, HASSAN M M I. conversion of methanol using modified H-MOR zeolite catalysts[J]. Chin J Catal, 2011,32(3):412-417.  

    24. [24]

      ABOUL-FOTOUH S M, ABOUL-GHEIT A K. Hydroconversion of cyclohexene using platinum-containing catalysts promoted with other noble metals and chlorine or fluorine[J]. Appl Catal A: Gen, 2001,208(1/2):55-61.  

    25. [25]

      ABOUL-GHEIT A K, ABOUL-FOTOUH S M, ABDEL-HAMID S M, ABOUL-GHEIT N A K. Effect of hydrochlorination and hydrofluorination of H-ZSM-5 on the catalytic hydroconversion reactions of cyclohexene[J]. Appl Catal A: Gen, 2006,297(1):102-110. doi: 10.1016/j.apcata.2005.08.044

    26. [26]

      LYCZKO N, ESPITALIER F, LOUISNARD O, SCHWARTZENTRUBER J. Effect of ultrasound on the induction time and the metastable zone widths of potassium sulphate[J]. Chem Eng J, 2002,86(3):233-241.  

    27. [27]

      TSAI T C. Application of zeolites in petroleum industries[J]. Catal Process, 1995,3(4):37-48.

    28. [28]

      ABOUL-FOTOUH S M. Cyclohexen reactivity using catalysts containing Pt, Re and PtRe supported on Na-and H-mordenite[J]. J Chin Chem Soc, 2003,50(6):1151-1158. doi: 10.1002/jccs.v50.6

    29. [29]

      ASHIM K G, RONALD A K. Fluorine-promoted catalyst[J]. Catal Rev Sci Eng, 1985,27(4):539-589. doi: 10.1080/01614948508064233

    30. [30]

      COVINI R, FATTORE V, GIORDANO N. Acidity of fluorinated aluminas, and their catalytic activity: Meaning and limits of a correlation[J]. J Catal, 1967,9(4):315-321. doi: 10.1016/0021-9517(67)90259-X

    31. [31]

      HIRSCHLER A E. The measurement of catalyst acidity using indicators forming stable surface carbonium ions[J]. J Catal, 1963,2(5):428-439. doi: 10.1016/0021-9517(63)90108-8

    32. [32]

      WEBB A N. Hydrofluoric acid and acidity of alumina[J]. Ind Eng Chem, 1957,49:261-263. doi: 10.1021/ie50566a042

    33. [33]

      ABOUL-FOTOUH S M, ABOUL-GHEIT A K. Hydroconversion of cyclohexene using platinum-containing catalysts promoted with other noble metals and chlorine or fluorine[J]. Appl Catal A: Gen, 2001,208(1/2):55-61.  

    34. [34]

      ALI L I, ALI A A, ABOUL-FOTOUH S M, ABOUL-GHEIT A K. Hydroisomerization, hydrocracking and dehydrocyclization of n-pentane and n-hexane using mono-and bimetallic catalysts promoted with fluorine[J]. Appl Catal A: Gen, 2001,215(1/2):161-173.

    35. [35]

      ALI A G A, ALI L I, ABOUL-FOTOUH S M, ABOUL-GHEIT A K. Hydroconversion of n-paraffins in light naphtha using Pt/Al2O3 catalysts promoted with noble metals and/or chlorine[J]. Appl Catal A: Gen, 2001,205(1/2):129-146.

    36. [36]

      ABOUL-FOTOUH S M, ABOUL-GHEIT N A K, HASSAN M M I. Conversion of methanol using modified H-MOR zeolite catalysts[J]. Chin J Catal, 2011,32(3):412-417.  

    37. [37]

      LE VAN MAO R, LE T S, FAIRBAIRN M, MUNTASAR A, XIAO S, DENES G. ZSM-5 zeolite with enhanced acidic properties[J]. Appl Catal A: Gen, 1999,185(1):41-52. doi: 10.1016/S0926-860X(99)00132-5

    38. [38]

      ARENA F, FRUSTERL F, MONDELLER N, GIORDANO N. Interaction pathway of chloride ions with γ-Al2O3: Surface acidity and thermal stability of the Cl/γ-Al2O3 System[J]. J Chem Soc Faraday Trans, 1992,88:3353-3356. doi: 10.1039/FT9928803353

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    3. [3]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    4. [4]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    5. [5]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    6. [6]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    7. [7]

      Tianyao HeGan LiXiaoqiang XieDong HanYunyue LengQiuli ZhangWenming LiuGuobo LiHongxiang ZhangShan HuangTing HuangHonggen Peng . Design of highly active meso-zeolite enveloping Pt–Ni bimetallic catalysts for degradation of toluene. Chinese Chemical Letters, 2025, 36(4): 110137-. doi: 10.1016/j.cclet.2024.110137

    8. [8]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    9. [9]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    10. [10]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    13. [13]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    14. [14]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    15. [15]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    16. [16]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    17. [17]

      Shuige ZhaoPengcheng YanPeipei LiuHaishan LiuNing LiPeng FuWeiming Zhu . Pyridapeptides F‒I, cyclohexapeptides from marine sponge-derived Streptomyces sp. OUCMDZ-4539. Chinese Chemical Letters, 2024, 35(7): 108950-. doi: 10.1016/j.cclet.2023.108950

    18. [18]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    19. [19]

      Lan YangYu LiMou JiangRui ZhouHengjiang CongMinghui YangLei ZhangShenhui LiYunhuang YangMaili LiuXin ZhouZhong-Xing JiangShizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512

    20. [20]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

Metrics
  • PDF Downloads(0)
  • Abstract views(983)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return