Citation: NIU Xiao-chen, CAO Dong-bo, ZHANG Bin, LIU Xing-chen, WEN Xiao-dong, QIN Yong, WANG Jian-guo. Surface structure of zinc ferrite (311)-A density functional theory study[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(8): 985-991. shu

Surface structure of zinc ferrite (311)-A density functional theory study

  • Corresponding author: CAO Dong-bo, caodongbo@sxicc.ac.cn
  • Received Date: 19 March 2018
    Revised Date: 31 May 2018

    Fund Project: the National Natural Science Foundation of China 91545121The project was supported by the National Natural Science Foundation of China (21473229, 91545121, 21273266)the National Natural Science Foundation of China 21273266the National Natural Science Foundation of China 21473229

Figures(7)

  • Zinc ferrite (ZnFe2O4) nanoparticles were synthesized by atomic layer deposition (ALD).The structure, magnetic and electronic properties of ZnFe2O4 were investigated by density functional theory (DFT) and atomic thermodynamics methods; the stabilities of ZnFe2O4 (311) surface with six different terminations were considered and the surface energies were related to O and Zn chemical potential corresponding to environment.The results indicate that bulk ZnFe2O4 has a normal spinel structure; it is an antiferromagnetic semiconductor with a band gap of 1.91 eV.Only four out of six possible terminations, that is, O1, O2, Fe2 and Zn2 terminations, can be stable within allowed region.In particular, the O1 termination is stable over a wide range of △μO under Zn-rich conditions (△μZn=0 eV), whereas the O2 termination turns to be most stable in Zn-poor environment (△μZn=-3.88 eV).
  • 加载中
    1. [1]

      TECHALERTMANEE T, CHANCHAROENRITH S, NAMKAJORN M, KIATISEVI S, CHAICHAROENWIMOLKUL L, SOMSOOK E. Facile synthesis of zinc-iron mixed oxide/carbon nanocomposites as nanocatalysts for the degration of methylene blue[J]. Mater Lett, 2015,145:224-228. doi: 10.1016/j.matlet.2015.01.079

    2. [2]

      CAO Feng, LI Xin-yong, QU Zhen-guo, CHEN Guo-hua. Nanocrystalline ZnFe2O4 catalyst for decolorization of acid orange Ⅱ[J]. Environ Poll Control, 2006,28(12):891-894. doi: 10.3969/j.issn.1001-3865.2006.12.004

    3. [3]

      SHINDE M M, SAWANT M R. Liquid phase Friedel-Crafts alkylation over mixed metal oxide catalyst[J]. J Chin Chem Soc, 2003,50(6):1221-1226. doi: 10.1002/jccs.v50.6

    4. [4]

      LEE H, JUNG J C, KIM H, CHUNG Y M, KIM T J, LEE S J, OH S H, KIM Y S, SONG I K. Effect of pH in the preparation of ZnFe2O4 for oxidative dehydrogenation of n-butene to 1, 3-butadiene:Correlation between catalytic performance and surface acidity of ZnFe2O4[J]. Catal Commun, 2008,9(6):1137-1142. doi: 10.1016/j.catcom.2007.10.023

    5. [5]

      SUN M Y, CHEN Y J, TIAN G H, WU A P, YAN H J, FU H G. Stable mesoporous ZnFe2O4 as an efficient electrocatalyst for hydrogen evolution reaction[J]. Electrochim Acta, 2016,190:186-192. doi: 10.1016/j.electacta.2015.12.166

    6. [6]

      LIN S, ZHANG D, PAN X L, DU Y X, LIU J, FAN D Y, WANG Y G, BI K, LEI M. New route to monodispersed zinc ferrite nanoparticles and its excellent oxygen reduction reaction property[J]. J Nanosci Nanotechnol, 2017,17(5):2917-2922. doi: 10.1166/jnn.2017.13039

    7. [7]

      DAS P, DUTTA A, BHAUMIK A, MUKHOPADHYAY C. Heterogeneous ditopic ZnFe2O4 catalyzed synthesis of 4H-pyrans:Further conversion to 1, 4-DHPs and report of functional group interconversion from amide to ester[J]. Green Chem, 2014,16(3):1426-1435. doi: 10.1039/C3GC42095G

    8. [8]

      SOLIMAN S, ELFALAKY A, FECHER G H, CLAUDIA F. Electronic structure calculations for ZnFe2O4[J]. Phys Rev B, 2011,83(8)085205(1/6).  

    9. [9]

      CHENG C. Long-range antiferromagnetic interactions in ZnFe2O4 and CdFe2O4:Density functional theory calculations[J]. Phys Rev B, 2008,78(13)132403(1/4).

    10. [10]

      YAO J H, LI Y W, LI X H, LE S R. Density functional theory investigations on the structure and electronic properties of normal spinel ZnFe2O4[J]. Integr Ferroelectr, 2013,145(1):17-23. doi: 10.1080/10584587.2013.788310

    11. [11]

      WANG X Q, CHEN L, FAN Q B, FAN J X, XU G L, YAN M H, HENDERSON M J, COURTOIS J, KUN X. Lactoferrin-assisted synthesis of zinc ferrite nanocrystal:Its magnetic performance and photocatalytic activity[J]. J Alloys Compd, 2015,652:132-138. doi: 10.1016/j.jallcom.2015.08.228

    12. [12]

      SUN M Y, CHEN Y J, TIAN G H, WU A P, YAN H J, FU H G. Stable mesoporous ZnFe2O4 as an efficient electrocatalyst for hydrogen evolution reaction[J]. Electrochim Acta, 2016,190:186-192. doi: 10.1016/j.electacta.2015.12.166

    13. [13]

      YAO Y J, QIN J C, CHEN H, WEI F Y, LIU X T, WANG J L, WANG S B. One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants[J]. J Hazard Mater, 2015,291:28-37. doi: 10.1016/j.jhazmat.2015.02.042

    14. [14]

      LU D B, ZHANG Y, LIN S X, WANG L T, WANG C M. Synthesis of magnetic ZnFe2O4/graphene composite and its application in photocatalytic degradation of dyes[J]. J Alloys Compd, 2013,579(4):336-342.  

    15. [15]

      DOM R, CHARY A, SADANANDA S, RAGHAVAN H, NEHA Y, BORSE P H. Solar hydrogen generation from spinel ZnFe2O4 photocatalyst:effect of synthesis methods[J]. Int J Energy Res, 2015,39(10):1378-1390. doi: 10.1002/er.v39.10

    16. [16]

      ZHANG J K, CHEN C Q, YAN W J, DUAN F F, ZHANG B, GAO Z, QIN Y. Ni nanoparticles supported on CNTs with excellent activity produced by atomic layer deposition for hydrogen generation from hydrolysis of ammonia borane[J]. Catal Sci Technol, 2017,6(7):2112-2119.  

    17. [17]

      QIN Y, ZHANG Z K, CUI Z L. Helical carbon nanofibers prepared by pyrolysis of acetylene with a catalyst derived from the decomposition of copper tartrate[J]. Carbon, 2003,41(15):3072-3074. doi: 10.1016/S0008-6223(03)00435-4

    18. [18]

      KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Phys Rev B:Condens Matter Mater Phys, 1993,47(1):558-561. doi: 10.1103/PhysRevB.47.558

    19. [19]

      BLÖCHL P E. Projector augmented-wave method[J]. Phys Rev B:Condens Matter Mater Phys, 1994,50(24):17953-17979. doi: 10.1103/PhysRevB.50.17953

    20. [20]

      DUDAREV S L, BOTTON G A, SAVRASOV S Y, HUMPHREYS C J, SUTTON A P. Electron-energy-loss spectra and the structural stability of nickel oxide:An LSDA+U study[J]. Phys Rev B:Condens Matter Mater Phys, 1998,57(3)1505. doi: 10.1103/PhysRevB.57.1505

    21. [21]

      XIE Y, YU H T, ZHANG G X, FU H G, SUN J Z. First-principles investigation of stability and structural properties of the BaTiO3 (110) polar surface[J]. J Phys Chem C, 2007,111(17):6343-6349. doi: 10.1021/jp0658997

    22. [22]

      REUTER K, SCHEFFLER M. Composition, structure and stability of RuO2(110) as a function of oxygen pressure[J]. Phys Rev B, 2001,65(3)035406(1/11).  

    23. [23]

      LUCCHESI S, RUSSO U, GIUSTA A D. Cation distribution in natural Zn-spinels:Franklinite[J]. Eur J Mineral, 1999,11(3):501-511. doi: 10.1127/ejm/11/3/0501

    24. [24]

      YAMADA Y, KAMAZAWA K, TSUNODA Y. Interspin interactions in ZnFe2O4:Theoretical analysis of neutron scattering study[J]. Phys Rev B, 2002,66(6)064401(1/7).  

    25. [25]

      SCHIESSL W, POTZEL W, KARZEL H, STEINER M, KALVIUS G M, MARTIN A, KRAUSE M K, HALEVY I, GAL J, SCHÄFER W, WILL G, HILLBERG M, WÄPPLING R. Magnetic properties of the ZnFe2O4 spinel[J]. Phys Rev B, 1996,53(14):9143-9152. doi: 10.1103/PhysRevB.53.9143

    26. [26]

      CHENG P, LI W, ZHOU T L, JIN Y P, GU M Y. Physical and photocatalytic properties of zinc ferrite doped titania under visible light irradiation[J]. J Photochem Photobiol A, 2004,168(1):97-101.  

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    3. [3]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    4. [4]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    5. [5]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    7. [7]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    14. [14]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    15. [15]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    16. [16]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    17. [17]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    19. [19]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    20. [20]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

Metrics
  • PDF Downloads(20)
  • Abstract views(898)
  • HTML views(176)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return