Preparation of MnO2 catalyst by electrochemical deposition and its application in the microbial fuel cells
- Corresponding author: SUN Yong-ming, sunym@ms.giec.ac.cn
Citation:
YANG Gai-xiu, WANG Ke-xin, ZHANG Ze-zhen, ZHEN Feng, SUN Yong-ming. Preparation of MnO2 catalyst by electrochemical deposition and its application in the microbial fuel cells[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(7): 889-896.
SLATE A J, WHITEHEAD K A, BROWNSON D A C, BANKS C E. Microbial fuel cells:An overview of current technology[J]. Renewable Sustainable. Energy Rev, 2019,101:60-81. doi: 10.1016/j.rser.2018.09.044
CAI T, HUANG Y, HUANG M, XI Y, PANG D, ZHANG W. Enhancing oxygen reduction reaction of supercapacitor microbial fuel cells with electrospun carbon nanofibers composite cathode[J]. Chem Eng J, 2019,371:544-553. doi: 10.1016/j.cej.2019.04.025
GUO D, TIAN Z, WANG J, KE X, ZHU Y. Co2N nanoparticles embedded N-doped mesoporous carbon as efficient electrocatalysts for oxygen reduction reaction[J]. Appl Surf Sci, 2019,473:555-563. doi: 10.1016/j.apsusc.2018.12.204
GUO Y Y, YUAN P F, ZHANG J N, HU Y F, AMIINU I S, WANG X, ZHOU J G, XIA H C, SONG Z B, XU Q, MU S C. Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-Air Batteries[J]. ACS Nano, 2018,12(2):1894-1901. doi: 10.1021/acsnano.7b08721
ZHUANG Lin. P, N-doped carbon as an efficient anti-poisoning catalyst against SOx, NOx and POx during oxygen reduction in acidic media[J]. Acta Phys-Chim Sin, 2019,35(7):659-660.
JING B, YOU S, MA Y, XING Z, CHEN H, DAI Y, ZHANG C, REN N, ZOU J. Fe3Se4/FeSe heterojunctions in cornstalk-derived N-doped carbon framework enhance charge transfer and cathodic oxygen reduction reaction to boost bio-electricity generation[J]. Appl Catal B:Environ, 2019,244:465-474. doi: 10.1016/j.apcatb.2018.11.074
LIU D, WU C, CHEN S, DING S, XIE Y, WANG C, WANG T, HALEEM Y A, REHMAN Z U, SANG Y, LIU Q, ZHENG X, WANG Y, GE B, XU H, SONG L. In situ trapped high-density single metal atoms within graphene:Iron-containing hybrids as representatives for efficient oxygen reduction[J]. Nano Res, 2018,11(4):2217-2228.
BURKITT R, WHIFFEN T R, YU E H. Iron phthalocyanine and MnOx composite catalysts for microbial fuel cell applications[J]. Appl Catal B:Environ, 2016,181:279-288. doi: 10.1016/j.apcatb.2015.07.010
WANG Jun, WEI Zi-Dong. Recent progress in non-precious metal catalysts for oxygen reduction reaction[J]. Acta Phys-Chim Sin, 2017,33(5):886-902.
LU X, ZHAI T, ZHANG X, SHEN Y, YUAN L, HU B, GONG L, CHEN J, GAO Y, ZHOU J. WO3-x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors[J]. Adv Mater, 2012,24(7):938-944. doi: 10.1002/adma.201104113
GORLIN Y, CHUNG C-J, NORDLUND D, CLEMENS B M, JARAMILLO T F. Mn3O4 supported on glassy carbon:An active non-precious metal catalyst for the oxygen reduction reaction[J]. ACS Catal, 2012,2(12):2687-2694. doi: 10.1021/cs3004352
CHENG F, SHEN J, PENG B, PAN Y, TAO Z, CHEN J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts[J]. Nat Chem, 2011,3(1):79-84. doi: 10.1038/nchem.931
YU S, LIU R, YANG W, HAN K, WANG Z, ZHU H. Synthesis and electrocatalytic performance of MnO2-promoted Ag@Pt/MWCNT electrocatalysts for oxygen reduction reaction[J]. J Mater Chem:A, 2014,2(15):5371-5378. doi: 10.1039/C3TA14564F
LIU X W, SUN X F, HUANG Y X, SHENG G P, ZHOU K, ZENG R J, DONG F, WANG S G, XU A W, TONG Z H, YU H Q. Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater[J]. Water Res, 2010,44(18):5298-5305. doi: 10.1016/j.watres.2010.06.065
MENG Y, SONG W, HUANG H, REN Z, CHEN S-Y, SUIB S L. Structure-property relationship of bifunctional MnO2 nanostructures:highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media[J]. J Am Chem Soc, 2014,136(32):11452-11464. doi: 10.1021/ja505186m
CLAUWAERT P, VAN DER HA D, BOON N, VERBEKEN K, VERHAEGE M, RABAEY K, VERSTRAETE W. Open air biocathode enables effective electricity generation with microbial fuel cells[J]. Environ Sci Technol, 2007,41(21):7564-7569. doi: 10.1021/es0709831
MAJIDI M R, FARAHANI F S, HOSSEINI M, AHADZADEH I. Low-cost nanowired alpha-MnO2/C as an ORR catalyst in air-cathode microbial fuel cell[J]. Bioelectrochem, 2019,125:38-45. doi: 10.1016/j.bioelechem.2018.09.004
KUMAR G G, AWAN Z, NAHM K S, XAVIER J S. Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells[J]. Biosens Bioelectron, 2014,53:528-534. doi: 10.1016/j.bios.2013.10.012
LU Na, ZHOU Ben, DENG Li-fang, ZHOU Shun-gui. Starch processing wastewater treatment using a continuous microbial fuel cell with MnO2 cathodic catalyst[J]. J Basic Sci Eng, 2009,17(Supplement):62-73.
ZHANG L, LIU C, ZHUANG L, LI W, ZHOU S, ZHANG J. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells[J]. Biosens Bioelectron, 2009,24(9):2825-2829. doi: 10.1016/j.bios.2009.02.010
LU M, KHARKWAL S, NG H Y, LI S F Y. Carbon nanotube supported MnO2 catalysts for oxygen reduction reaction and their applications in microbial fuel cells[J]. Biosens Bioelectron, 2011,26(12):4728-4732. doi: 10.1016/j.bios.2011.05.036
ROCHE I, CHAINET E, CHATENET M, VONDRAK J. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the Oxygen Reduction Reaction (ORR) in alkaline medium:Physical characterizations and ORR mechanism[J]. J Phys Chem C, 2007,111(3):1434-1443.
GAO F, TANG X, YI H, CHU C, LI N, LI J, ZHAO S. In-situ DRIFTS for the mechanistic studies of NO oxidation over alpha-MnO2, beta-MnO2 and gamma-MnO2 catalysts[J]. Chem Eng J, 2017,322:525-537. doi: 10.1016/j.cej.2017.04.006
PENG R, ZHENG Y, GUI L, ZHU Y, YU P, LUO Y. Template free synthesize mesoporous manganese dioxides for nater treatment[J]. J Alloys Compd, 2018,753:130-137. doi: 10.1016/j.jallcom.2018.04.144
JU J, ZHAO H, KANG W, TIAN N, DENG N, CHENG B. Designing MnO2 & carbon composite porous nanofiber structure for supercapacitor applications[J]. Electrochim Acta, 2017,258:116-123. doi: 10.1016/j.electacta.2017.10.094
YANG H, ZHANG C, MENG Q, CAO B, TIAN G. Pre-lithiated manganous oxide/graphene aerogel composites as anode materials for high energy density lithium ion capacitors[J]. J Power Sources, 2019,431:114-124. doi: 10.1016/j.jpowsour.2019.05.060
ZHANG P, LI K, LIU X. Carnation-like MnO2 modified activated carbon air cathode improve power generation in microbial fuel cells[J]. J Power Sources, 2014,264:248-253. doi: 10.1016/j.jpowsour.2014.04.098
Mo Guang-quan.Application of functinalized carbon nanotube materials in microbial fuel cell[D]. Guangzhou: South China University of Technology, 2010.
LIU Y, LIU Z-M. Promoted activity of nitrogen-doped activated carbon as a highly efficient oxygen reduction catalyst in microbial fuel cells[J]. J Appl Electrochem, 2019,49(2):119-133. doi: 10.1007/s10800-018-1263-6
YANG G, CHEN D, LV P, KONG X, SUN Y, WANG Z, YUAN Z, LIU H, YANG J. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications[J]. Sci Rep-UK, 2016,635252. doi: 10.1038/srep35252
LIU Y, FAN Y S, LIU Z M. Pyrolysis of iron phthalocyanine on activated carbon as highly efficient non-noble metal oxygen reduction catalyst in microbial fuel cells[J]. Chem Eng J, 2019,361:416-427. doi: 10.1016/j.cej.2018.12.105
QIAN Fan. MnO2 Prepared by electrochemical deposition for supercapacitor applications[D]. Dalian: Dalian University of Technology, 2018.
YAN L, SHEN C, NIU L, LIU M-C, LIN J, CHEN T, GONG Y, LI C, LIU X, XU S. Experimental and theoretical investigation of the effect of oxygen vacancies on the electronic structure and pseudocapacitance of MnO2[J]. ChemSusChem, 2019,1215.
STOERZINGER K A, RISCH M, HAN B, SHAO-HORN Y. Recent insights into manganese oxides in catalyzing oxygen reduction kinetics[J]. ACS Catal, 2015,5(10):6021-6031. doi: 10.1021/acscatal.5b01444
SELVAKUMAR K, KUMAR S M S, THANGAMUTHU R, RAJPUT P, BHATTACHARYYA D, JHA S N. 2D and 3D silica-template-derived MnO2 electrocatalysts towards enhanced oxygen evolution and oxygen reduction activity[J]. ChemElectroChem, 2018,5(24):3980-3990. doi: 10.1002/celc.201801143
CHEN Su-yi. Synthesis of Transition Metals dopedManganese Dioxides and the oxygen reduction activities[D]. Guangzhou: Guangdong university of technology, 2015.
SHAO M, CHANG Q, DODELET J-P, CHENITZ R. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chem Rev, 2016,3594.
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Shilong Li , Ming Zhao , Yefei Xu , Zhanyi Liu , Mian Li , Qing Huang , Xiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Kun Chen , Huimin Lin , Xin Peng , Ziying Wu , Jingyue Dai , Yi Sun , Yaxuan Feng , Ziyi Huang , Zhiqiang Yu , Meng Yu , Guangyu Yao , Jigang Wang . In situ synthesis of MnO2 micro/nano-adjuvants for enhanced immunotherapy of breast tumors. Chinese Chemical Letters, 2025, 36(5): 110045-. doi: 10.1016/j.cclet.2024.110045
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081