Depolymerization mechanism of alkali lignin in sub- and supercritical ethanol
- Corresponding author: XUE Guo-xin, xueguoxin@126.com
Citation:
CHEN Meng-wei, GUO Da-liang, WANG Lin-fang, XUE Guo-xin. Depolymerization mechanism of alkali lignin in sub- and supercritical ethanol[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(10): 1203-1210.
AZADI P, INDERWILDIA O, FARNOOD R, KING D A. Liquid fuels, hydrogen and chemicals from lignin:A critical review[J]. Renewable Sustainable Energy Rev, 2013,21:506-523. doi: 10.1016/j.rser.2012.12.022
YOSHIKAWA T, YAGI T, SHINOHARA S, FUKUNAGA T, NAKASAKA Y, TAGO T, MASUDA T. Production of phenols from lignin via depolymerization and catalytic cracking[J]. Fuel Process Technol, 2013,108:69-75. doi: 10.1016/j.fuproc.2012.05.003
PANDEY M P, KIM C S. Lignin depolymerization and conversion:A review of thermochemical methods[J]. Chem Eng Technol, 2011,34(1):29-41. doi: 10.1002/ceat.v34.1
TOLEDANO A, SERRANO L, LABIDI J. Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization[J]. Fuel, 2014,116:617-624. doi: 10.1016/j.fuel.2013.08.071
YUAN Z, CHENG S, LEITCH M, XU C C. Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol[J]. Bioresour Technol, 2010,101(23):9308-9313. doi: 10.1016/j.biortech.2010.06.140
MAHMOOD N, YUAN Z, SCHMIDT J, XU C C. Hydrolytic depolymerization of hydrolysis lignin:Effects of catalysts and solvents[J]. Bioresour Technol, 2015,190:416-419. doi: 10.1016/j.biortech.2015.04.074
ZHOU Jing-hui, XIE Zhang-hong, WANG Xing, ZHENG Lai-jiu. Advance in lignin-depolymerization and reaction mechanism by supercritical fluids technique[J]. J Dalian Polytech Univ, 2013,32(6):426-431.
PIŃKOWSKA H, WOLAK P, ZŁOCIŃSKA A. Hydrothermal decomposition of alkali lignin in sub-and supercritical water[J]. Chem Eng J, 2012,187:410-414. doi: 10.1016/j.cej.2012.01.092
KIM J Y, OH S, WANG H H, CHO T S, CHOI I G, CHOI J W. Effects of various reaction parameters on solvolytical depolymerization of lignin in sub-and supercritical ethanol[J]. Chemosphere, 2013,93(9):1755-1764. doi: 10.1016/j.chemosphere.2013.06.003
TAN S S, MACFARLANE D R, UPFAL J, EDYE L A, DOHERTY W O, PATTI A F, SCOTT J L. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid[J]. Green Chem, 2009,11(3):339-345. doi: 10.1039/b815310h
CHENG S, WIKS C, YUAN Z, LEITCH M, XU C C. Hydrothermal degradation of alkali lignin to bio-phenolic compounds in sub/supercritical ethanol and water-ethanol co-solvent[J]. Polym Degrad Stab, 2012,97(6):839-848. doi: 10.1016/j.polymdegradstab.2012.03.044
HU J, SHEN D, WU S, ZHANG H, XIAO R. Effect of temperature on structure evolution in char from hydrothermal degradation of lignin[J]. J Anal Appl Pyrolysis, 2014,106:118-124. doi: 10.1016/j.jaap.2014.01.008
SHARMA R K, WOOTEN J B, BALIGA V L, LIN X, CHAN W G, HAJALIGOL M R. Characterization of chars from pyrolysis of lignin[J]. Fuel, 2004,83(11):1469-1482.
LORA J H, GLASSER W G. Recent industrial applications of lignin:A sustainable alternative to nonrenewable materials[J]. J Polym Environ, 2002,10(1/2):39-48. doi: 10.1023/A:1021070006895
Chunyang Bao , Ruoxuan Miao , Yuhan Ding , Qingfu Ban , Yusheng Qin , Jie Liu , Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087
Dongdong Yao , JunweiGu , Yi Yan , Junliang Zhang , Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
Xiyuan Su , Zhenlin Hu , Ye Fan , Xianyuan Liu , Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
(a): alkali lignin; (b): 180 ℃ and 4 h char; (c): 240 ℃and 4 h char; (d): 300 ℃ and 4 h char