Citation: CHEN Meng-wei, GUO Da-liang, WANG Lin-fang, XUE Guo-xin. Depolymerization mechanism of alkali lignin in sub- and supercritical ethanol[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(10): 1203-1210. shu

Depolymerization mechanism of alkali lignin in sub- and supercritical ethanol

  • Corresponding author: XUE Guo-xin, xueguoxin@126.com
  • Received Date: 5 April 2016
    Revised Date: 12 June 2016

Figures(6)

  • The depolymerization process of wheat straw alkali lignin in sub- and supercritical ethanol was investigated with a micro autoclave reactor. The degraded product properties and the depolymerization mechanism of lignin structure were studied by scanning electron microscopy (SEM), gas chromatography/mass spectrometry (GC/MS) and infrared spectroscopy (FT-IR). The experimental results show that the minimum residual char yield (16.5%) is obtained at the condition of ethanol supercritical point (240℃, 7.2 MPa). Under subcritical ethanol conditions, alkali lignin firstly melts and disperses in ethanol as 1.0-2.0 μm diameter of microspheres, then a small amount of ether linkages and benzene ring side chain Cα are broken to form phenols, esters, ketones and acids products. Under supercritical ethanol conditions, the diameter of molten microsphere is significantly reduced, and plenty of ether linkages and benzene ring side chain Cα are continuously broken, meanwhile, the lipid products are subjected to secondary decomposition reaction. The yield of lipid is decreased (11.94%), while the yield of phenolic products from depolymerization is increased (52.14%).
  • 加载中
    1. [1]

      AZADI P, INDERWILDIA O, FARNOOD R, KING D A. Liquid fuels, hydrogen and chemicals from lignin:A critical review[J]. Renewable Sustainable Energy Rev, 2013,21:506-523. doi: 10.1016/j.rser.2012.12.022

    2. [2]

      YOSHIKAWA T, YAGI T, SHINOHARA S, FUKUNAGA T, NAKASAKA Y, TAGO T, MASUDA T. Production of phenols from lignin via depolymerization and catalytic cracking[J]. Fuel Process Technol, 2013,108:69-75. doi: 10.1016/j.fuproc.2012.05.003

    3. [3]

      PANDEY M P, KIM C S. Lignin depolymerization and conversion:A review of thermochemical methods[J]. Chem Eng Technol, 2011,34(1):29-41. doi: 10.1002/ceat.v34.1

    4. [4]

      TOLEDANO A, SERRANO L, LABIDI J. Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization[J]. Fuel, 2014,116:617-624. doi: 10.1016/j.fuel.2013.08.071

    5. [5]

      YUAN Z, CHENG S, LEITCH M, XU C C. Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol[J]. Bioresour Technol, 2010,101(23):9308-9313. doi: 10.1016/j.biortech.2010.06.140

    6. [6]

      MAHMOOD N, YUAN Z, SCHMIDT J, XU C C. Hydrolytic depolymerization of hydrolysis lignin:Effects of catalysts and solvents[J]. Bioresour Technol, 2015,190:416-419. doi: 10.1016/j.biortech.2015.04.074

    7. [7]

      ZHOU Jing-hui, XIE Zhang-hong, WANG Xing, ZHENG Lai-jiu. Advance in lignin-depolymerization and reaction mechanism by supercritical fluids technique[J]. J Dalian Polytech Univ, 2013,32(6):426-431.  

    8. [8]

      PIŃKOWSKA H, WOLAK P, ZŁOCIŃSKA A. Hydrothermal decomposition of alkali lignin in sub-and supercritical water[J]. Chem Eng J, 2012,187:410-414. doi: 10.1016/j.cej.2012.01.092

    9. [9]

      KIM J Y, OH S, WANG H H, CHO T S, CHOI I G, CHOI J W. Effects of various reaction parameters on solvolytical depolymerization of lignin in sub-and supercritical ethanol[J]. Chemosphere, 2013,93(9):1755-1764. doi: 10.1016/j.chemosphere.2013.06.003

    10. [10]

      TAN S S, MACFARLANE D R, UPFAL J, EDYE L A, DOHERTY W O, PATTI A F, SCOTT J L. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid[J]. Green Chem, 2009,11(3):339-345. doi: 10.1039/b815310h

    11. [11]

      CHENG S, WIKS C, YUAN Z, LEITCH M, XU C C. Hydrothermal degradation of alkali lignin to bio-phenolic compounds in sub/supercritical ethanol and water-ethanol co-solvent[J]. Polym Degrad Stab, 2012,97(6):839-848. doi: 10.1016/j.polymdegradstab.2012.03.044

    12. [12]

      HU J, SHEN D, WU S, ZHANG H, XIAO R. Effect of temperature on structure evolution in char from hydrothermal degradation of lignin[J]. J Anal Appl Pyrolysis, 2014,106:118-124. doi: 10.1016/j.jaap.2014.01.008

    13. [13]

      SHARMA R K, WOOTEN J B, BALIGA V L, LIN X, CHAN W G, HAJALIGOL M R. Characterization of chars from pyrolysis of lignin[J]. Fuel, 2004,83(11):1469-1482.

    14. [14]

      LORA J H, GLASSER W G. Recent industrial applications of lignin:A sustainable alternative to nonrenewable materials[J]. J Polym Environ, 2002,10(1/2):39-48. doi: 10.1023/A:1021070006895

  • 加载中
    1. [1]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    2. [2]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    3. [3]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    6. [6]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    7. [7]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    8. [8]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    9. [9]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    12. [12]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    13. [13]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    14. [14]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    15. [15]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    18. [18]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    19. [19]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    20. [20]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(2)
  • Abstract views(1530)
  • HTML views(631)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return