Citation: HU Li, YANG Dong-hua, ZHAO Yu, DONG Zhi-shuai, WANG Gai, BO Qiong. Synthesis of NiY zeolite and hydrogen evolution performance in cathode of a microbial electrolysis cell[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(5): 607-614. shu

Synthesis of NiY zeolite and hydrogen evolution performance in cathode of a microbial electrolysis cell

  • Corresponding author: YANG Dong-hua, ydh1962@163.com
  • Received Date: 30 October 2017
    Revised Date: 16 March 2018

    Fund Project: The project was supported by the Natural Science Foundation of Shanxi Province, China(2014011014-6)the Natural Science Foundation of Shanxi Province, China 2014011014-6

Figures(9)

  • NiY zeolites were synthesized in the system of Na2O-Al2O3-SiO2-H2O with the addition of nickel nitrate by crystallization directing agent and characterized by XRD, SEM, TEM, N2 adsorption-desorption, etc. The results show that the crystallinity and zeta potential decrease after an increase at first with the increasing of nickel added. It means that nickel nitrate can promote the formation of molecular sieve when Si/Ni(mol ratio) is greater than 5, while it has an inhibitory effect when Si/Ni(mol ratio) is less than 5. The NiY zeolites with 1.5-3 μm of size not only possess special morphology, six or four square columns with grooved structure, but also have a multiple porous structure including microporous and mesoporous. The sample test by cyclic voltammetry (CV) and polarization curve(LSV) in microbial electrolysis cell (MEC) indicates that the NiY zeolites with Si/Ni(mol ratio)=5 present the best electrochemical characteristics with an outstanding redox performance, a minimum overvoltage and the highest electrocatalytic activity. Moreover, the hydrogen production yield reaches 10.1 mL/4 mg in 12 h with the hydrogen purity of 81.69%, surpassing that with Pt electrodes by about 28%. It suggests that the NiY zeolites have a better hydrogen evolution activity and it is possible to replace Pt as a novel cathode catalyst in microbial electrolysis cell.
  • 加载中
    1. [1]

      DAI Hong-yan, YANG Hui-min, LIU Xian, JIAN Xuan, GUO Min-min, CAO Le-le, LIANG Zhen-hai. Preparation and electrochemical evaluation of MoS2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell[J]. Chem J Chin Univ, 2018,39(2):351-358. doi: 10.7503/cjcu20170255

    2. [2]

      XIE Miao, XU Long-jun, HU Jin-feng, XU Yan-zhao. Effects of cathode catalyst modification on the performance of microbial fuel cells[J]. J Fuel Chem Technol, 2017,45(10):1275-1280. doi: 10.3969/j.issn.0253-2409.2017.10.016

    3. [3]

      JIA Yu-jie, JIANG Jian-chun, SUN Kang, LU Tian-hong. Effect of Pt/Au atomic ratio in active carbonsupported Au-Pt catalyst on its cathodic performance in direct formic acid fuel cell[J]. J Fuel Chem Technol, 2011,39(10):792-795. doi: 10.3969/j.issn.0253-2409.2011.10.013

    4. [4]

      JEREMIASSEA W, HAMELERS H V, KLEIJN J M, BUISMAN C J N. Use of biocompatible buffers to reduce the concentration overpotential for hydrogen evolution[J]. Environ Sci Technol, 2009,43(17):6882-6887. doi: 10.1021/es9008823

    5. [5]

      CONWAY B E, JERKIEWICZ G. Relation of energy and coverages of underpotential and over potential deposited H at Pt and other metals to the 'vocano curve' for cathodic H2evolution kinetics[J]. Electro chim Acta, 2000,45(25/26):4075-4083.  

    6. [6]

      HU H, FAN Y, LIU H. Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts[J]. Int J Hydrogen Energy, 2009,34(20):8535-8542. doi: 10.1016/j.ijhydene.2009.08.011

    7. [7]

      ZHANG Y M, MERRILL M D, LOGEN B E. The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells[J]. Int J Hydrogen Energy, 2010,35:12020-12028. doi: 10.1016/j.ijhydene.2010.08.064

    8. [8]

      MARIO M, ELITSA C, RASHKO R, HUBENOVA Y. Novel nanostructured electrocatalysts for hydrogen evolution reaction in neutral and weak acidic solutions[J]. Int J Hydrogen Energy, 2012,37:16522-16526. doi: 10.1016/j.ijhydene.2012.02.102

    9. [9]

      ZHOU Ji-Hong, LUO Yi-bin, ZONG Bao-ning. Formation mechanism ofporous molecular sieve Y composite[J]. Pet Process Petrochem, 2012,43(1):26-31.  

    10. [10]

      KUMAR R, MUKHERJEE P, PANDEY P K, RAJMOHANAN P, BHAMMIK A. Role of oxyanions as promoter for enhancing nucleation and crystallization in the sythesis of MFI-type microporous mateials[J]. Micproporous Mesoporous Mater, 1998,22(1/3):23-31.

    11. [11]

      RAJIV K, ASIM B, RANJEET K AHEDI, GANAPATHY S. Promoter-induced enhancement of the crystallization rate of zeolites and related molecular sieves[J]. Nature, 1996,381(6580):298-300. doi: 10.1038/381298a0

    12. [12]

      CHEN Song. Metal-incorpprated ZSM-5 by in-situ synthesis and its morphology characteristics[J]. Acta Pet Sin, 2009,25(s2):116-119.  

    13. [13]

      CHU Jun. Synthesis and Extruded Molding of Mo/HMCM-22 Catalyst in Methane Dehydroaromatization[D]. Dalian: Dalian University of Technology, 2013: 25-28.

    14. [14]

      SHEN Bao-jian, QIN Zheng-xing, LIN Feng, ZHOU Shu-ge, SHEN Wen, WANG Bao-jie, ZHAO Hong-juan, LIU Hong-hai. Desilication by alkaline treatment and increasing the silica to alumina ratio of zeolite Y[J]. Chin J Catal, 2012,33(1):152-163.  

    15. [15]

      CHA Quan-xing. Physical Chemistry, Dynamics Introduction of Electrode Process[M]. Beijing:Science Press, 2002.

    16. [16]

      LIU H, GUO R X, LIU Y, THOMPSON G E, LIU Z. The effect of processing gas on corrosion performance of electroless Ni-W-P coatings treated by laser[J]. Surf Coat Technol, 2012,206(15):3350-3359. doi: 10.1016/j.surfcoat.2012.01.039

    17. [17]

      PRIETO P, NISTOR V, NOUNEH K, QYAMA A, ABD-LEFDIL M, DIAZ R. XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth[J]. Appl Surf Sci, 2012,258(22):8807-8813. doi: 10.1016/j.apsusc.2012.05.095

    18. [18]

      FAN Chun-hui, MA Hong-rui, HUA Li, WANG Jia-hong, WANG Hai-jun. FT-IR and XPS analysis of characteristics of synthesized zeolite and removal mechanisms for Cr(Ⅲ)[J]. Spectrosc Spect Anal, 2012,32(2):324-329.  

    19. [19]

      KIM K S, WINOGRAD N. X-ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode[J]. Surf Sci, 1974,43625. doi: 10.1016/0039-6028(74)90281-7

    20. [20]

      KIM K S, DAVIS R E. Electron spectroscopy of the nickel-oxygen system[J]. J Electron Spectrosc Relat Phenom, 1972/73,1(3)251. doi: 10.1016/0368-2048(72)85014-X

    21. [21]

      KRESGE C T, LEONOWICZ M E, ROTH W J, VARTULI J C, BECK J C. Ordered mesoporous melocular sievers synthesized by a liquid template mechanism[J]. Nature, 1992,35:710-712.  

    22. [22]

      CAO Yin-liang. Synthesis of highly active nickel-bsced hydrogen evolution electrodes and their hydrogen evolution bebavior in the alkaline medium[D]. Beijing: Beijing University of Chemical Technology, 2013: 99-112.

    23. [23]

      FREGUIA S, RABAEY K, YUAN Z, KELLER J. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells[J]. Electrochim Acta, 2007,53(2):598-603. doi: 10.1016/j.electacta.2007.07.037

    24. [24]

      LIU M Y, HE Y Q, MAO Z Q, XIE X F. CO-poisoning mechanism of anodic electrocatalyst in proton-exchange membrane fuel cell[J]. Chin J Power Sources, 2002,26(z1):247-249.  

    25. [25]

      JIA Meng-qiu, YANG Wen-sheng. Applied Electrochemistry[M]. Beijing:Higher Education Press, 2004:124.

  • 加载中
    1. [1]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    7. [7]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    8. [8]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    9. [9]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    19. [19]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(8)
  • Abstract views(1074)
  • HTML views(186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return