引用本文:
宁轲, 卜龙利, 刘双, 张婷婷, 张丹庆, 张继宾, 陈瑾. 整体式催化剂活性组分负载策略及微波催化燃烧甲苯特性[J]. 燃料化学学报,
2020, 48(9): 1140-1152.
Citation:
NING Ke, BO Long-li, LIU Shuang, ZHANG Ting-ting, ZHANG Dan-qing, ZHANG Ji-bin, CHEN Jin. Loading strategy for the active components of monolithic catalyst and its influences on the microwave enhanced catalytic combustion of toluene[J]. Journal of Fuel Chemistry and Technology,
2020, 48(9): 1140-1152.
Received Date:
13 July 2020 Revised Date:
05 August 2020 Available Online:
01 September 2020
Fund Project:
The project was supported by the Natural Science Foundation of Shaanxi Province, China(2009JM7004)
Abstract:
Aiming at solving the shedding problem of active components, a loading strategy that includes carrier pretreatment and addition of silica sol was adopted to strengthen the combination of the active components with the carrier. Catalytic activity of the catalyst was investigated in toluene combustion by using microwave single-mode cavity, and high-firmness catalysts were characterized subsequently. The study showed that the shedding rate of Cu-Mn-Ce(silica sol)/cordierite honeycomb(CH) catalyst prepared under conditions of 10% hydrochloric acid pretreatment at room temperature and 0.125 of the mass ratio of silica sol to water absorption amount of CH carrier was 0.0129%, which was much lower than 0.950% of Cu-Mn-Ce/CH catalyst. Cu-Mn-Ce(silica sol)/CH catalyst had smaller active particles, larger specific surface area and more active crystals than Cu-Mn-Ce/CH catalyst. Under conditions of 1000 mg/m3 of initial concentration, 0.12 m3/h of air flow, 200 W of microwave power and 350 ℃ of bed temperature, the removal and mineralization rates of toluene by Cu-Mn-Ce(silica sol)/CH catalyst were 98.5% and 87.9%, respectively. The Cu-Mn-Ce(silica sol)/CH catalyst owned high catalytic activity and stability after 43 h run, and the shedding rate of active components was 0.0328%. The addition of silica sol could enhance the interaction forces between the active components and the catalyst carrier, and the formation of siloxane chemical bonds could greatly improve the connection of active components to prolong the service life of the catalyst.
Figure 3.
Load and shedding rates of the active components of catalysts after adding silica sol
k1=0; k2=0.0500; k3=0.0750; k4=0.1000; k5=0.1063; k6=0.1125; k7=0.1188; k8=0.1250; k9=0.1500; msilica sol/mwater absorption refer to the mass ratio of silica sol to water absorption amount of the carrier
两种新制备催化剂的XRD谱图见图 5(a)。由图 5(a)可知,催化剂表面存在大量铜锰铈的单金属氧化物、复合金属、复合金属固溶物晶体以及尖晶石类活性物质。对比发现,硅溶胶的添加增加了活性组分的多样性,更多活性物质晶体,如CeO2(ICCD PDF NO.02-81-0792)、CeCu6(ICCD PDF NO.02-05-0660)、Ce(Mn0.257Cu0.743)6(ICCD PDF NO.02-72-2485)、CuMnO2(ICCD PDF NO.02-65-2308)、Cu1.5Mn1.5O4(ICCD PDF NO.02-70-0262)、Cu1.2Mn1.8O4(ICCD PDF NO.02-71-1144)、Mn(CuMn)O4(ICCD PDF NO.02-82-0668)和Cu(Cu0.04Mn0.96)O2(ICCD PDF NO.02-83-0034)等被检出,而这些晶体在VOCs氧化过程中起着催化作用。由图 5(a)还可知,添加硅溶胶后CuO和Cu2O晶体的出峰位置有所变化,分析是由于CeO2侵占了部分CuO的活性位点,使得CuO在催化剂上的分布更均匀且改变了铜的晶相,其协同作用有利于催化剂活性的提高[29]。
Figure 10.
Mineralization rate of toluene over two different catalysts
■: mineralization rate of toluene over the Cu-Mn-Ce(silica sol)/CH catalyst; □: mineralization rate of toluene over the Cu-Mn-Ce/CH catalyst; ●: Cu-Mn-Ce(silica sol)/CH catalyst activity; ○: Cu-Mn-Ce/CH catalyst activity reaction conditions: toluene concentration 1000 mg/m3, air flow rate 0.12 m3/h, catalystvolume 6.15×10-5 m3, bed height 100 mm, bed temperature 350 ℃, Pheating=250 W, Pinsulation=220 W
ZHANG X M, XUE Z G, LI H, YAN L, YANG Y, WANG Y, DUAN J C, LI L, CHAI F H, CHENG M M, ZHANG W Q. Ambient volatile organic compounds pollution in China[J]. J Environ Sci,
2017, 55(5):
69-75.
[2]
CHEN K Y, ZHU L Z, YANG K. Tricrystalline TiO2 with enhanced photocatalytic activity and durability for removing volatile organic compounds from indoor air[J]. J Environ Sci,
2015, 32(6):
189-195.
[3]
BARI M A, KINDZIERSKI W B. Ambient volatile organic compounds (VOCs) in Calgary, Alberta:Sources and screening health risk assessment[J]. Sci Total Environ,
2018, 631-632(8):
627-640.
[4]
DUMANOGLU Y, KARA M, ALTIOK H, ODABASI M, ELBIR T, BAYRAM A. Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region[J]. Atmos Environ,
2014, 98(12):
168-178.
[5]
闻择. 国家颁布"十三五" VOCs污染防治方案严限重点地区石油化工等高排放项目[J]. 上海化工,
2017,42,(11): 3.
WEN Ze. The"13th Five-Year-Plan"for pollution prevention and control was issued by Chinese government to limit high-emission projects such as petrochemical industry in heavily polluted areas[J]. Shanghai Chem Ind,
2017, 42(11):
3.
黄青斌. 挥发性有机物催化氧化技术及催化剂研究进展[J]. 化学试剂,
2019,41,(2): 107-112.
HUANG Qing-bin. Research progress in catalytic oxidation technology and catalysts for volatile organic compounds[J]. Chem Reagents,
2019, 41(2):
107-112.
[8]
卜龙利, 刘海楠, 王晓晖, 张浩, 孙剑宇, 杨力. 不同加热方式下催化氧化甲苯的性能研究[J]. 环境化学,
2013,32,(8): 1524-1531.
BO Long-li, LIU Hai-nan, WANG Xiao-hui, ZHANG Hao, SUN Jian-yu, YANG Li. Study on the catalytic oxidation of toluene under different heating modes[J]. Environ Chem,
2013, 32(8):
1524-1531.
[9]
张钰彩, 卜龙利, 王晓晖, 刘海楠, 张浩. 微波加热下苯的催化氧化性能研究[J]. 环境科学,
2012,33,(8): 2759-2765.
ZHANG Yu-cai, BO Long-li, WANG Xiao-hui, LIU Hai-nan, ZHANG Hao. Study on catalytic oxidation of benzene by microwave heating[J]. Environ Sci,
2012, 33(8):
2759-2765.
[10]
卜龙利, 杨力, 孙剑宇, 梁欣欣, 虎雪姣, 孟海龙. 双组分VOCs的催化氧化及动力学分析[J]. 环境科学,
2014,35,(9): 3302-3308.
BO Long-li, YANG Li, SUN Jian-yu, LIANG Xin-xin, HU Xue-jiao, MENG Hai-long. Catalytic oxidation of two-component VOCs and kinetic analysis[J]. Environ Sci,
2014, 35(9):
3302-3308.
[11]
刘海楠.二氧化钛复合型催化剂制备及其微波辅助催化氧化甲苯性能试验研究[D].西安: 西安建筑科技大学, 2013.LIU Hai-nan. Preparation of titania composite catalyst and its performance in microwave-assisted catalytic oxidation of toluene[D]. Xi'an: Xi'an University of Architecture and Technology, 2013.
史志铭, 梁开明, 顾守仁. 元素掺杂对堇青石晶体结构及热膨胀系数的作用[J]. 现代技术陶瓷,
2000,21,(2): 18-23.
SHI Zhi-ming, LIANG Kai-ming, GU Shou-ren. Effects of elements-doping on the crystal structure and thermal expansion coefficient of cordierite[J]. Adv Ceram,
2000, 21(2):
18-23.
[14]
ZHAI Y Q, XIONG J M, LI C Q, XU X, LUO G H. Influence of preparation method on performance of a metal supported perovskite catalyst for combustion of methane[J]. J Rare Earth,
2010, 28(1):
54-58.
doi: 10.1016/S1002-0721(09)60050-8
[15]
陆彦彬, 马彪, 张伟辰. HZSM-5/整体式催化剂的制备及其在甲醇制汽油反应中的应用[J]. 辽宁石油化工大学学报,
2015,35,(1): 12-15.
LU Yan-bin, MA Biao, ZHANG Wei-chen. Preparation of HZSM-5/monolithic catalyst and its application in conversion of methanol to gasoline[J]. J Liaoning Shihua Univ,
2015, 35(1):
12-15.
宋万仓.金属基不锈钢表面上Al2O3涂层的制备[D].辽宁: 大连理工大学, 2010.SONG Wan-cang. Preparation of Al2O3 coating on stainless steel substrate[D]. Liaoning: Dalian University of Technology, 2010.
[19]
陈春波, 李平, 隋志军, 王寅, 朱连利, 赫崇衡. 大比表面积高牢固度堇青石蜂窝涂层的制备[J]. 工业催化,
2010,18,(3): 40-45.
CHEN Chun-bo, LI Ping, SUI Zhi-jun, WANG Yin, ZHU Lian-li, HE Chong-heng. Preparation of cordierite honeycomb coating with large surface area and high adhesive capacity[J]. Ind Catal,
2010, 18(3):
40-45.
[20]
贺振富, 邵潜, 沈宁元. 载体预处理对催化剂涂层结构的影响[J]. 石油学报(石油加工),
2001,17,(3): 83-85.
HE Zhen-fu, SHAO Qian, SHEN Ning-yuan. Influence of pretreatment on structure of catalytic washcoat[J]. Acta Pet Sin(Pet Proc Sect),
2001, 17(3):
83-85.
[21]
刘海楠, 卜龙利, 王晓晖, 张浩, 孙剑宇, 杨力, 蔡力栋. 二氧化钛复合型催化剂制备及其微波辅助催化氧化甲苯性能[J]. 环境科学学报,
2013,33,(6): 1720-1727.
LIU Hai-nan, BO Long-li, WANG Xiao-hui, ZHANG Hao, SUN Jian-yu, YANG Li, CAI Li-dong. Preparation of titania composite catalyst and its performance in microwave-assisted catalytic oxidation of toluene[J]. Acta Sci Circum,
2013, 33(6):
1720-1727.
BO L L, SUN S Y. Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst[J]. Front Chem Sci Eng,
2019, 13(2):
385-392.
[24]
SALKER A V, WEISWEILER W. Catalytic behaviour of metal based ZSM-5 catalysts for NOx reduction with NH3 in dry and humid conditions[J]. Appl Catal A:Gen,
2000, 203(2):
221-229.
doi: 10.1016/S0926-860X(00)00489-0
[25]
贺利娜, 卜龙利, 都琳, 宁轲, 刘嘉栋. 微波催化燃烧气态甲苯特性及床层温度分布[J]. 中国环境科学,
2019,39,(8): 3242-3248.
HE Li-na, BO Long-li, DU Lin, NING Ke, LIU Jia-dong. Microwave catalytic combustion of gaseous toluene and distribution of bed temperature[J]. China Environ Sci,
2019, 39(8):
3242-3248.
孟海龙, 卜龙利, 刘嘉栋, 高波, 冯奇奇, 谭娜, 谢帅. CoCuMnOx光催化氧化多组分VOCs特性及其动力学[J]. 环境科学,
2016,37,(5): 1670-1676.
MENG Hai-long, BO Long-li, LIU Jia-dong, GAO Bo, FENG Qi-qi, TAN Na, XIE Shuai. CoCuMnOx Photocatalyzed oxidation of multi-component VOCs and kinetic analysis[J]. Environ Sci,
2016, 37(5):
1670-1676.
[31]
WANG D, ZAHNG L, LI J H, KAMASAMUDRAM K, EPLING W. NH3-SCR over Cu/SAPO-34-Zeolite acidity and Cu structure changes as a function of Cu loading[J]. Catal Today,
2014, 231(1):
64-74.
[32]
HU Y T, LV Z H, WEI C, YU S C, LIU M H, GAO C J. Separation and antifouling properties of hydrolyzed PAN hybrid membranes prepared via in-situ sol-gel SiO2 nanoparticles growth[J]. J Membrane Sci,
2018, 545(1):
250-258.
[33]
杨力, 卜龙利, 孙剑宇, 梁欣欣, 虎雪姣, 孟海龙. 双组分甲苯、氯苯的微波辅助催化氧化及机理[J]. 环境工程学报,
2014,8,(11): 4871-4879.
YANGA Li, BO Long-li, SUN Jian-yu, LIANG Xin-xin, HU Xue-jiao, MENG Hai-long. Microwave assisted catalytic oxidation of two-component toluene, chlorobenzene and relative removal mechanism[J]. Chin J Environ Eng,
2014, 8(11):
4871-4879.
[34]
WU D F, ZHANG Y H, LI Y D. Mechanical stability of monolithic catalysts:scattering of washcoat connection and failure mechanism of active material[J]. Ind Eng Chem Res,
2013, 52(41):
14713-14721.
doi: 10.1021/ie402546q
[35]
Krijn P. de Jong. Synthesis of Solid Catalysts[M]. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2009.
[36]
周铭. 涂膜附着机理与附着力促进剂的选择[J]. 现代涂料与涂装,
2007,10,(8): 1-3.
ZHOU Ming. Connection mechanism of the coatings and selection of the connection accelerants[J]. Mod Paint Finish,
2007, 10(8):
1-3.
[37]
ZAMARO J M, ULLA M A, MIRÓ E E. Zeolite washcoating onto cordierite honeycomb reactors for environmental applications[J]. Chem Eng J,
2005, 106(1):
25-33.
[38]
KONG D Y, YANG H, WEI S, LI D Y, WANG J B. Gel-casting without de-airing process using silica sol as a binder[J]. Ceram Int,
2007, 33(2):
133-139.
doi: 10.1016/j.ceramint.2005.08.006
[39]
晋斌. 硅溶胶及其在消防技术中的应用[J]. 消防科学与技术,
1989(2): 35-36.
JIN Bin. Silica sol and its application in fire protection technology[J]. Fire Sci Technol,
1989, (2):
35-36.
图 1
实验装置流程示意图
Figure 1
Schematic of the experimental device flow
Figure 3
Load and shedding rates of the active components of catalysts after adding silica sol
k1=0; k2=0.0500; k3=0.0750; k4=0.1000; k5=0.1063; k6=0.1125; k7=0.1188; k8=0.1250; k9=0.1500; msilica sol/mwater absorption refer to the mass ratio of silica sol to water absorption amount of the carrier
Figure 10
Mineralization rate of toluene over two different catalysts
■: mineralization rate of toluene over the Cu-Mn-Ce(silica sol)/CH catalyst; □: mineralization rate of toluene over the Cu-Mn-Ce/CH catalyst; ●: Cu-Mn-Ce(silica sol)/CH catalyst activity; ○: Cu-Mn-Ce/CH catalyst activity reaction conditions: toluene concentration 1000 mg/m3, air flow rate 0.12 m3/h, catalystvolume 6.15×10-5 m3, bed height 100 mm, bed temperature 350 ℃, Pheating=250 W, Pinsulation=220 W