Citation: MENG Yu, LIU Xiao-yan, BAI Miao-miao, WANG Ying, MA Ya-jun, CAO Zhi. First-principles study on the CO adsorption and electronic properties of Fe (111) modified by Cu single atom[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(4): 440-447. shu

First-principles study on the CO adsorption and electronic properties of Fe (111) modified by Cu single atom

  • Corresponding author: MENG Yu, mengyu@yulinu.edu.cn
  • Received Date: 19 January 2020
    Revised Date: 15 April 2020

    Fund Project: Scientific Research Program Funded by Yulin Government 2019-83-1Natural Science Foundation Research Program of Shaanxi province 2019JQ-905Scientific Research Program Funded by Shaanxi Provincial Education Department 19JS071Natural Science Foundation Research Program of Shaanxi province 2018JZ2004PhD Research Startup Foundation of Yulin University 17GK13PhD Research Startup Foundation of Yulin University 17GK12The project was supported by the Natural Science Foundation Research Program of Shaanxi province (2019JQ-905, 2018JZ2004), Scientific Research Program Funded by Shaanxi Provincial Education Department (19JS071), Scientific Research Program Funded by Yulin Government(2019-83-1), PhD Research Startup Foundation of Yulin University (17GK12, 17GK13) and the Foundation of State Key Laboratory of Coal Conversion (J20-21-908)Foundation of State Key Laboratory of Coal Conversion J20-21-908

Figures(6)

  • In this paper, the effect of Cu single atom modification on the adsorption of CO and electronic properties of Fe (111) surface has been studied by density functional theory (DFT). Two ways of adsorption and substitution have been studied for Cu mono-atom modification. The results show that the adsorption capacity of CO on the Cu modified Fe (111) becomes weak. One reason is that the sites provided by the Cu atom itself are weak for CO, and the other is that Cu weakens the adsorption of CO on the Fe nearby Cu. The analysis of electronic properties indicates that when Cu acts on the Fe (111), the part electrons of Fe can be transferred to the Cu, which weakens the electronic interaction between Fe and adsorbed molecules, and adjusts its adsorption capacity. Therefore, the Fe surface modified by Cu atom can well adjust the adsorption, dissociation and subsequent reaction catalytic activity of CO, which provides basic information to further explore the syngas catalytic reaction mechanism of Cu modified Fe surface.
  • 加载中
    1. [1]

      ZHANG Q, KANG J, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis:Tuning the product selectivity[J]. ChemCatChem, 2010,2:1030-1058. doi: 10.1002/cctc.201000071

    2. [2]

      WANG Run-ping, MAO Shu-hong, CHI Yong-hong, DUAN Xiu-qin, LIU Jun. Overview of the study on FT synthesis of iron-based catalyst auxiliaries[J]. Tianjin Chem Ind, 2008,22:17-19.  

    3. [3]

      HUO C F, WU B S, GAO P, YANG Y, LI Y W, JIAO H. The mechanism of potassium promoter:Enhancing the stability of active surfaces[J]. Angew Chem Int Ed, 2011,50:7403-7406. doi: 10.1002/anie.201007484

    4. [4]

      VAN STEEN E, CLAEYS M. Fischer-Tropsch catalysts for the biomass-to-liquid process[J]. Chem Eng Technol, 2008,31:655-666. doi: 10.1002/ceat.200800067

    5. [5]

      CHONCO Z H, FERREIRA A, LODYA L, CLAEYSM , VAN STEEN E. Comparing silver and copper as promoters in Fe-based Fischer-Tropsch catalysts using delafossite as a model compound[J]. J Catal, 2013,307:283-294. doi: 10.1016/j.jcat.2013.08.005

    6. [6]

      CHONCO Z H, LODYA L, CLAEYS M, VAN STEEN E. A model for investigating the role of copper in the dynamic iron-based Fischer-Tropsch catalyst[J]. J Catal, 2013,308:363-373. doi: 10.1016/j.jcat.2013.08.012

    7. [7]

      O'BRIEN R J, DAVIS B H. Impact of copper on an alkali promoted Iron Fischer-Tropsch catalyst[J]. Catal Lett, 2004,94:1-6. doi: 10.1023/B:CATL.0000019322.69160.ef

    8. [8]

      HU Wei. Preparation Of Cu-Fe Catalysts For Low Carbon Alcohols And Mechanism Research[D]. Shanghai: East China University of Science and Technology, 2017.

    9. [9]

      LI Ming-yang, LI Tao. Effect of Fe modified Cu/Zn/MgO catalyst on the synthesis of lower alcohol from syngas[J]. Fine Chem, 2015,32(6):646-651.  

    10. [10]

      HE S, WANG W, SHEN Z. Carbon nanotube-supported bimetallic Cu-Fe catalysts for syngas conversion to higher alcohols[J]. Mol Catal, 2019,479110610. doi: 10.1016/j.mcat.2019.110610

    11. [11]

      SHI X, YU H, GAO S. Synergistic effect of nitrogen-doped carbon-nanotube-supported Cu-Fe catalyst for the synthesis of higher alcohols from syngas[J]. Fuel, 2017,210:241-248. doi: 10.1016/j.fuel.2017.08.064

    12. [12]

      WANG T, TIAN X X, LI Y W, WANG J, BELLER M, JIAO H. Coverage-dependent CO adsorption and dissociation mechanisms on iron surfaces from DFT computations[J]. ACS Catal, 2014,4(6):1991-2005. doi: 10.1021/cs500287r

    13. [13]

      WANG T, TIAN X, YANG Y, LI Y, WANG J, BELLER M, JIAO H. Co-adsorption and mutual interaction of nCO+mH2 on the Fe(110) and Fe(111) surfaces[J]. Catal Today, 2015,261:82-92.  

    14. [14]

      LIU S, LI Y, WANG J, JIAO H. Reactions of CO, H2O, CO2, and H2 on the clean and precovered Fe(110) surfaces-A DFT investigation[J]. J Phys Chem C, 2015,119(51):28377-28388. doi: 10.1021/acs.jpcc.5b07497

    15. [15]

      CAO D B, WANG S G, LI Y W, WANG J, JIAO H. What is the product of ketene hydrogenation on Fe5C2(001):Oxygenates or hydrocarbons?[J]. J Mol Catal A:Chem, 2007,272(1/2):275-287.

    16. [16]

      LING L, WANG Q, ZHANG R. Formation of C2 oxygenates and ethanol from syngas on an Fe-decorated Cu-based catalyst:Insight into the role of Fe as a promoter[J]. Phys Chem Chem Phys, 2017,19(45):30883-30894. doi: 10.1039/C7CP05411D

    17. [17]

      TIAN X, WANG T, YANG Y, LI Y W, JIAO H J. Structures and energies of Cu clusters on Fe and Fe3C surfaces from density functional theory computation[J]. Phys Chem Chem Phys, 2014,16(48):26997-27011. doi: 10.1039/C4CP04012K

    18. [18]

      ZHAO Xun-hua, LI Yong-wang, WANG Jian-guo, HUO Chun-fang. CO adsorption, CO dissociation, and CC coupling on Cu monolayer-covered Fe (100)[J]. J Fuel Chem Technol, 2011,39(12):956-960. doi: 10.3969/j.issn.0253-2409.2011.12.013

    19. [19]

      KRESSE G, FURTHMVLLER J. Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996,6:15-50. doi: 10.1016/0927-0256(96)00008-0

    20. [20]

      KRESSE G, FURTHMVLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996,54:11169-11186. doi: 10.1103/PhysRevB.54.11169

    21. [21]

      BLÖCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994,50:17953-17979. doi: 10.1103/PhysRevB.50.17953

    22. [22]

      KRESSE G, HAFNER J. First-principles study of the adsorption of atomic H on Ni (111), (100) and (110)[J]. Surf Sci, 2000,459:287-302. doi: 10.1016/S0039-6028(00)00457-X

    23. [23]

      PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996,77:3865-3868. doi: 10.1103/PhysRevLett.77.3865

    24. [24]

      PERDEW J P, BURKEK , ERNZERHOF M. ERRATA:Generalized gradient approximation made simple[J]. Phys Rev Lett, 1997,781396.  

    25. [25]

      METHFESSEL M, PAXTON A T. High-precision sampling for brillouin-zone integration in metals[J]. Phys Rev B, 1989,403616. doi: 10.1103/PhysRevB.40.3616

    26. [26]

      BLIGAARD T, NØRSKOV J K, DAHL S, MATTHIESEN J, CHRISTENSEN CH, SEHESTED J. The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J]. J Catal, 2004,224:206-217. doi: 10.1016/j.jcat.2004.02.034

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    8. [8]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    12. [12]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    13. [13]

      Yanjie LiChaoqun QuSiqi MengJiaqi HuZe GaoHongji XuRui GaoMing Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872

    14. [14]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    15. [15]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    16. [16]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    17. [17]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    18. [18]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    19. [19]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    20. [20]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

Metrics
  • PDF Downloads(6)
  • Abstract views(923)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return