Citation: YU Fei, LI Zheng-jia, AN Yun-lei, GAO Peng, ZHONG Liang-shu, SUN Yu-han. Research progress in the direct conversion of syngas to lower olefins[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(7): 801-814. shu

Research progress in the direct conversion of syngas to lower olefins

  • Corresponding author: ZHONG Liang-shu, zhongls@sari.ac.cn SUN Yu-han, sunyh@sari.ac.cn
  • Received Date: 28 March 2016
    Revised Date: 13 April 2016

    Fund Project: Shanghai Municipal Science and Technology Commission, China 15DZ1170500The project was supported by the National Natural Science Foundation of China 91545112The project was supported by the National Natural Science Foundation of China 21403278The project was supported by the National Natural Science Foundation of China 21573271

Figures(10)

  • The direct conversion of syngas to lower olefins is one of the most challenging subjects in the field of C1 chemistry; it is considered as a new attractive route for producing lower olefins from non-petroleum resources, owing to its process simplicity and low energy consumption. Bifunctional catalysis using composite catalysts such as OX-ZEO and Fischer-Tropsch to olefins (FTO) reaction are two main pathways for the direct conversion of syngas to lower olefins. In this paper, the recent research progress made in the direct conversion of syngas to lower olefins via these ways was reviewed. The catalysis mechanism for olefins formation, the design and development of novel catalysts, as well as the effect of various additives on the catalyst performance were considered; lastly, an expectation outlook was given on the future trend for the direct conversion of syngas to lower olefins.
  • 加载中
    1. [1]

      CORMA A, MELO F V, SAUVANAUD L, ORTEGA F. Light cracked naphtha processing: Controlling chemistry for maximum propylene production[J]. Catal Today, 2005,107-108:699-706. doi: 10.1016/j.cattod.2005.07.109

    2. [2]

      TORRES GALÜIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catal, 2013,3(9):2130-2149. doi: 10.1021/cs4003436

    3. [3]

      TIAN P, WEI Y X, YE M, LIU Z M. Methanol to olefins (MTO): From fundamentals to commercialization[J]. ACS Catal, 2015,5(3):1922-1938. doi: 10.1021/acscatal.5b00007

    4. [4]

      TORRES GALÜIS H M, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012,335(6070):835-838. doi: 10.1126/science.1215614

    5. [5]

      JIAO F, LI J J, PAN X L, XIAO J P, LI H B, MA H, WEI M M, PAN Y, ZHOU Z Y, LI M R, MIAO S, LI J, ZHU Y F, XIAO D, HE T, YANG J H, QI F, FU Q, BAO X H. Selective conversion of syngas to light olefins[J]. Science, 2016,351(6277):1065-1068. doi: 10.1126/science.aaf1835

    6. [6]

      CHEN La-shan. Present situation of MTO/MTP technology development and its application perspective[J]. Chem Fert Des, 2008,46(1):3-6.  

    7. [7]

      HE Chang-qing, LIU Zhong-min, CAI Guang-yu, YANG Li-xin, CHANG Yan-jun, WANG Zuo-zhou, JIANG Zeng-quan, SHI Ren-min, YI Lin-lin, SUN Cheng-lin.A method to synthesize silicoaluminophosphatezeolite via dual-template: CN, 1106715[P]. 1995-08-16.

    8. [8]

      LIU Zhong-min, CAI Guang-yu, HE Chang-qing, YANG Li-xin, WANG Zuo-zhou, LUO Jing-shen, CHANG Yan-jun, SHI Ren-min, JIANG Zeng-quan, SUN Cheng-lin. A method to synthesize silicoaluminophosphate zeolite with triethylaminetemplate: CN, 1088483[P]. 1994-06-29.

    9. [9]

      CAI Guang-yu, LIU Zhong-min, HE Chang-qing, SUN Cheng-lin, YANG Li-xin, CHANG Yan-jun, SHI Ren-min, JIANG Zeng-quan, YI Lin-lin, WANG Zuo-zhou. Preparationand application of metal-modified silicoaluminophosphate zeolite catalyst: CN, 1167654[P]. 1997-12-17.

    10. [10]

      LI Hong-yuan, XU Lei, LIU Zhong-min, SUN Cheng-lin, YANG Li-xin. A method to synthesize SAPO-17 and SAPO-44zeolite: CN, 1299775[P]. 2001-06-20.

    11. [11]

      ČEJKA J, CORMA A, ZONES S. Zeolites and Catalysis: Synthesis, Reactions and Applications[M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010: 1056.

    12. [12]

      CHEN Y P, XU Y M, CHENG D G, CHEN Y C, CHEN F Q, LU X Y, HUANG Y P, NI S B. C2-C4 hydrocarbons synthesis from syngas over CuO-ZnO-Al2O3/SAPO-34 bifunctional catalyst[J]. J Chem Technol Biotechnol, 2015,90(3):415-422. doi: 10.1002/jctb.2015.90.issue-3

    13. [13]

      LI Jin-jing, PAN Xiu-lian, BAO Xin-he. Direct conversion of syngas into hydrocarbons over a core-shell Cr-Zn@SiO2@SAPO-34 catalyst[J]. Chin J Catal, 2015,36(7):1131-1135. doi: 10.1016/S1872-2067(14)60297-7

    14. [14]

      CHENG K, GU B, LIU X L, KANG J C, ZHANG Q H, WANG Y. Direct and highly selective conversion of synthesis gas to lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed, 2016,55(15):4725-4728. doi: 10.1002/anie.201601208

    15. [15]

      DE JONG K P. Surprised by selectivity[J]. Science, 2016,351(6227):1030-1031.  

    16. [16]

      SCHULZ H. Short history and present trends of Fischer-Tropsch synthesis[J]. Appl Catal A:Gen, 1999,186(1/2):3-12.  

    17. [17]

      ZHANG Q H, KANG J C, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity[J]. ChemCatChem, 2010,2(9):1030-1058. doi: 10.1002/cctc.201000071

    18. [18]

      BILOEN P. On the mechanism of the Fischer-Tropsch synthesis[J]. J Roy Neth Chem Soc, 1980,99(2):33-38.  

    19. [19]

      BILOEN P, SACHTLER W M H. Mechanism of hydrocarbon synthesis over Fischer-Tropsch catalysts[J]. Adv Catal, 1981,30:165-216.  

    20. [20]

      BRADY Ⅲ R C, PETTIT R. Reactions of diazomethane on transition-metal surfaces and their relationship to the mechanism of the Fischer-Tropsch reaction[J]. J Am Chem Soc, 1980,102(19):6181-6182. doi: 10.1021/ja00539a053

    21. [21]

      BRADY Ⅲ R C, PETTIT R. Mechanism of the Fischer-Tropsch reaction. The chain propagation step[J]. J Am Chem Soc, 1981,103(5):1287-1289. doi: 10.1021/ja00395a081

    22. [22]

      VAN DER LAAN G P, BEENACKERS A A C M. Kinetics and selectivity of the Fischer-Tropsch synthesis: A literature review[J]. Catal Rev, 1999,41(3/4):255-318.  

    23. [23]

      FISCHER F, TROPSCH H. Synthesis of petroleum at atmospheric pressure from gasification products of coal[J]. Brennstoff-Chem, 1926,7:97-104.

    24. [24]

      FISCHER F, TROPSCH H. Direct synthesis of petroleum hydrocarbons at ordinary pressure. Ⅰ. Ⅱ.[J]. Ber Dtsch Chem Ges, 1926,59B:830-831.

    25. [25]

      WENTRCEK R, WOOD B J, WISE H. The role of surface carbon in catalytic methanation[J]. J Catal, 1976,43(1/3):363-366.  

    26. [26]

      BILOEN P, HELLE J N, SACHTLER W M H. Incorporation of surface carbon into hydrocarbons during Fischer-Tropsch synthesis: Mechanistic implications[J]. J Catal, 1979,58(1):95-107. doi: 10.1016/0021-9517(79)90248-3

    27. [27]

      RABO J A, RISCH A P, POUTSMA M L. Reactions of carbon monoxide and hydrogen on Co, Ni, Ru, and Pd metals[J]. J Catal, 1978,53(3):295-311. doi: 10.1016/0021-9517(78)90102-1

    28. [28]

      KAMINSKY M C, WINOGRAD N, GEOFFROY G L, VANNICE M A. Direct SIMS observation of methylidyne, methylene, and methyl intermediates on a nickel (Ⅲ) methanation catalyst[J]. J Am Chem Soc, 1986,108(6):1315-1316. doi: 10.1021/ja00266a042

    29. [29]

      ARAKI M, PONEC V. Methanation of carbon monoxide on nickel and nickel-copper alloys[J]. J Catal, 1976,44(3):439-448. doi: 10.1016/0021-9517(76)90421-8

    30. [30]

      SHRIVER D F, SAILOR M J. Transformations of carbon monoxide and related ligands on metal ensembles[J]. Acc Chem Res, 1988,21(10):374-379. doi: 10.1021/ar00154a004

    31. [31]

      BRADLEY J S. The chemistry of carbidocarbonyl clusters[J]. Adv Organomet Chem, 1983,22:1-58.  

    32. [32]

      CHISHOLM M H, HAMMOND C E, JOHNSON V J, STREIB W E, HUFFMAN J C. Metal alkoxides: Models for metal oxides. 17. Reductive cleavage of carbon monoxide to carbide and oxide by ditungsten and tetratungsten alkoxides. Crystal and molecular structures of W4(μ4-C)(OCH2-c-Pen)14, W4(μ4-C)(O)(OCH2-t-Bu)12 and W4(μ4-C)(O)(O-i-Pr)12[J]. J Am Chem Soc, 1992, 114(18): 7056-7065.

    33. [33]

      VANNICE M A. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the group Ⅷ metals: Ⅰ. The specific activities and product distributions of supported metals[J]. J Catal, 1975,37(3):449-461. doi: 10.1016/0021-9517(75)90181-5

    34. [34]

      BHASIN M M, BARTLEY W J, ELLGEN P C, WILSON T P. Synthesis gas conversion over supported rhodium and rhodium-iron catalysts[J]. J Catal, 1978,54(2):120-128. doi: 10.1016/0021-9517(78)90035-0

    35. [35]

      ICHIKAWA M. Catalysis by supported metal crystallites from carbonyl clusters. II. Catalytic ethanol synthesis from CO and H2 under atmospheric pressure over supported rhodium crystallites prepared from Rh carbonyl clusters deposited on TiO2, ZrO2, and La2O3[J]. Bull Chem Soc Jpn, 1978,51(8):2273-2277. doi: 10.1246/bcsj.51.2273

    36. [36]

      ICHIKAWA M. Catalysis by supported metal crystallites prepared from metal carbonyl clusters: III. Catalytic vapor-phase hydroformylation of olefins over Rh, bimetallic Rh-Co, and Co crystallites prepared from the carbonyl cluster compounds dispersed on zinc oxide[J]. J Catal, 1979,56(1):127-129. doi: 10.1016/0021-9517(79)90096-4

    37. [37]

      ICHIKAWA M. Catalytic hydroformylation of olefins over the rhodium, bimetallic Rh-Co, and cobalt carbonyl clusters supported with some metal oxides[J]. J Catal, 1979,59(1):67-78. doi: 10.1016/S0021-9517(79)80046-9

    38. [38]

      WATSON P R, SOMORJAI G A. The hydrogenation of carbon monoxide over rhodium oxide surfaces[J]. J Catal, 1981,72(2):347-363. doi: 10.1016/0021-9517(81)90018-X

    39. [39]

      WATSON P R, SOMORJAI G A. The formation of oxygen-containing organic molecules by the hydrogenation of carbon monoxide using a lanthanum rhodate catalyst[J]. J Catal, 1982,74(2):282-295. doi: 10.1016/0021-9517(82)90034-3

    40. [40]

      KIP B J, HERMANS E G F, VAN WOLPUT J H M C, HERMANS N M A, VAN GRONDELLE J, PRINS R. Hydrogenation of carbon monoxide over rhodium/silica catalysts promoted with molybdenum oxide and thorium oxide[J]. Appl Catal, 1987,35(1):109-139. doi: 10.1016/S0166-9834(00)82426-4

    41. [41]

      LAVALLEY J C, SAUSSEY J, LAMOTTE J, BREAULT R, HINDERMANN J P, KIENNEMANN A. Infrared study of carbon monoxide hydrogenation over rhodium/ceria and rhodium/silica catalysts[J]. J Phys Chem, 1990,94(15):5941-5947. doi: 10.1021/j100378a061

    42. [42]

      DRY M E, DE W, ERASMUS H B. Update of the sasol synfuels process[J]. Ann Rev Energy, 1987,12:1-46. doi: 10.1146/annurev.eg.12.110187.000245

    43. [43]

      BUSSEMEIER B, FROHNING C D, CORNILS B. Lower olefins via Fischer-Tropsch[J]. Hgdrocarbon Process, 1975,55(11):105-112.  

    44. [44]

      BUESSEMEIER B, FROHNING C D, HORN G, KLUY W. Process for the production of unsaturated hydro-carbons: US, 4455395[P]. 1984-6-19.

    45. [45]

      BUESSEMEIER B, FROHNING C D, HORN G, KLUY W. Process for the manufacture of unsaturated hydrocarbons: US, 4564642[P]. 1986-01-14.

    46. [46]

      VENTER J, KAMINSKY M, GEOFFROY G L, VANNICE M A. Carbon-supported Fe-Mn and K-Fe-Mn clusters for the synthesis of C2-C4 olefins from CO and H2: Ⅰ. Chemisorption and catalytic behavior[J]. J Catal, 1987,103(2):450-465. doi: 10.1016/0021-9517(87)90136-9

    47. [47]

      SHEN Xing, WANG Lei, ZHANG Yong-feng, LI Zeng-xi, ZHANG Xiang-ping, ZHANG Suo-jiang. Preparation and performance of supported iron-based catalysts for conversion of synthesis gas to light olefins[J]. Chin J Process Eng, 2009,9(6):1178-1185.  

    48. [48]

      VENTER J, KAMINSKY M, GEOFFROY G L, VANNICE M A. Carbon-supported Fe-Mn and K-Fe-Mn clusters for the synthesis of C2-C4 olefins from CO and H2: Ⅱ. Activity and selectivity maintenance and regenerability[J]. J Catal, 1987,105(1):155-162. doi: 10.1016/0021-9517(87)90015-7

    49. [49]

      DRY M E, OOSTHUIZEN G J. The correlation between catalyst surface basicity and hydrocarbon selectivity in the Fischer-Tropsch synthesis[J]. J Catal, 1968,11(1):18-24. doi: 10.1016/0021-9517(68)90004-3

    50. [50]

      YANG Y, XIANG H W, XU Y Y, BAI L, LI Y W. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 2004,266(2):181-194. doi: 10.1016/j.apcata.2004.02.018

    51. [51]

      LI J B, MA H F, ZHANG H T, SUN Q W, YING W Y, FANG D Y. Sodium promoter on iron-based catalyst for direct catalytic synthesis of light alkenes from syngas[J]. Fuel Process Technol, 2014,125:119-124. doi: 10.1016/j.fuproc.2014.03.017

    52. [52]

      LI J B, MA H F, ZHANG H T, SUN Q W, YING W Y, FANG D Y. Direct production of light olefins from syngas over potassium modified Fe-Mn catalyst[J]. React Kinet Mech Cat, 2014,112(2):409-423. doi: 10.1007/s11144-014-0716-0

    53. [53]

      CHEN Jia-ning, LIU Yong-mei. Effects of Mn-K synergistic action on iron-based catalyst for CO hydrogenation to light olefins[J]. J Fuel Chem Technol, 2013,41(12):1488-1494.  

    54. [54]

      LOHITHARN N, GOODWIN JR J G. Effect of K promotion of Fe and FeMn Fischer-Tropsch synthesis catalysts: Analysis at the site level using SSITKA[J]. J Catal, 2008,260(1):7-16. doi: 10.1016/j.jcat.2008.08.011

    55. [55]

      RANKIN J L, BARTHOLOMEW C H. Effects of potassium and calcination pretreatment on the adsorption and chemical/physical properties of Fe/SiO2[J]. J Catal, 1986,100(2):533-540. doi: 10.1016/0021-9517(86)90126-0

    56. [56]

      TIHAY F, ROGER A C, KIENNEMANN A, POURROY G. Fe-Co based metal/spinel to produce light olefins from syngas[J]. Catal Today, 2000,58(4):263-269. doi: 10.1016/S0920-5861(00)00260-1

    57. [57]

      TIHAY F, POURROY G, RICHARD-PLOUET M, ROGER A C, KIENNEMANN A. Effect of Fischer-Tropsch synthesis on the microstructure of Fe-Co-based metal/spinel composite materials[J]. Appl Catal A: Gen, 2001,206(1):29-42. doi: 10.1016/S0926-860X(00)00595-0

    58. [58]

      KALAKKAD D S, SHROFF M D, KÖHLER S, JACKSON N, DATYE A K. Attrition of precipitated iron Fischer-Tropsch catalysts[J]. Appl Catal A: Gen, 1995,133(2):335-350. doi: 10.1016/0926-860X(95)00200-6

    59. [59]

      TORRES GALÜIS H M, KOEKEN A C J, BITTER J H, DAVIDIAN T, RUITENBEEK M, DUGULAN A I, DE JONG K P. Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. J Catal, 2013,303:22-30. doi: 10.1016/j.jcat.2013.03.010

    60. [60]

      KANG S H, BAE J W, SAI PRASAD P S, PARK S J, WOO K J, JUN K W. Effect of preparation method of Fe-based Fischer-Tropsch catalyst on their light olefin production[J]. Catal Lett, 2009,130(3):630-636.  

    61. [61]

      HOFFER B W, BUNZEL S, NEUMANN D, BAY K, SCHWAB E, GRAESSLE U, STEINER J. Method for producing olefins through reaction of carbon monoxide with hydrogen: WO 2009013174[P]. 2009-01-29.

    62. [62]

      WANG D, ZHOU X P, JI J, DUAN X Z, QIAN G, ZHOU X G, CHEN D, YUAN W K. Modified carbon nanotubes by KMnO4 supported iron Fischer-Tropsch catalyst for the direct conversion of syngas to lower olefins[J]. J Mater Chem A, 2015,3(8):4560-4567. doi: 10.1039/C4TA05202A

    63. [63]

      VAN DIJK W L, NIEMANTSVERDRIET J W, VAN DAR KRAAN A M, VAN DER BAAN H S. Effects of manganese oxide and sulphate on the olefin selectivity of iron catalysts in the Fischer-Tropsch reaction[J]. Appl Catal, 1982,2(4/5):273-288.  

    64. [64]

      BROMFIELD T C, COVILLE N J. The effect of sulfide ions on a precipitated iron Fischer-Tropsch catalyst[J]. Appl Catal A: Gen, 1999,186(1/2):297-307.  

    65. [65]

      BROMFIELD T C, COVILLE N J. Surface characterization of sulfided precipitated-iron Fischer-Tropsch catalysts by X-ray photoelectron spectroscopy[J]. Appl Surf Sci, 1997,119(1/2):19-24.  

    66. [66]

      WU B S, BAI L, XIANG H W, LI Y W, ZHANG Z X, ZHONG B. An active iron catalyst containing sulfur for Fischer-Tropsch synthesis[J]. Fuel, 2004,83(2):205-212. doi: 10.1016/S0016-2361(03)00253-9

    67. [67]

      MCCUE A J, ANDERSON J A. Sulfur as a catalyst promoter or selectivity modifier in heterogeneous catalysis[J]. Catal Sci Technol, 2014,4(2):272-294. doi: 10.1039/C3CY00754E

    68. [68]

      KRITZINGER J A. The role of sulfur in commercial iron-based Fischer-Tropsch catalysis with focus on C2-product selectivity and yield[J]. Catal Today, 2002,71(3/4):307-318.  

    69. [69]

      PARK J Y, LEE Y J, KHANNA P K, JUN K W, BAE J W, KIM Y H. Alumina-supported iron oxide nanoparticles as Fischer-Tropsch catalysts: Effect of particle size of iron oxide[J]. J Mol Catal A, 2010,323(1/2):84-90.  

    70. [70]

      ZHOU X P, JI J, WANG D, DUAN X Z, QIAN G, CHEN D, ZHOU X G. Hierarchical structured α-Al2O3 supported S-promoted Fe catalysts for direct conversion of syngas to lower olefins[J]. Chem Commun, 2015,51(42):8853-8856. doi: 10.1039/C5CC00786K

    71. [71]

      CROUS R, BROMFIELD T C, BOOYENS S. Olefin selective FT catalyst composition and preparation thereof: US, 2012029096[P]. 2012-02-02.

    72. [72]

      HADADZADEH H, MIRZAEI A A, MORSHEDI M, RAEISI A, FEYZI M, ROSTAMIZADEH N. The effect of H2S on the selectivity of light alkenes in the Fe-Mn-catalyzed Fischer-Tropsch synthesis[J]. Petrol Chem, 2010,50(1):78-86. doi: 10.1134/S0965544110010123

    73. [73]

      TORRES GALÜIS H M, BITTER J H, DAVIDIAN T, RUITENBEEK M, DUGULAN A I, DE JONG K P. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. J Am Soc Chem, 2012,134(39):16207-16215. doi: 10.1021/ja304958u

    74. [74]

      MA Li-hai, ZHANG Jian-li, FAN Su-bing, ZHAO Tian-sheng. Preparation of Fe-Mn catalyst by hydrothermal method and its catalytic activity for the synthesis of light olefins from CO hydrogenation[J]. J Fuel Chem Technol, 2013,41(11):1356-1360.  

    75. [75]

      LIU Yi, LIU Yong, CHEN Jian-feng, ZHANG Yi. Effects of MnOx supports on light olefin synthesis using cobalt catalyst in Fischer-Tropsch reaction[J]. J Chem Ind Eng, 2015,66(9):3413-3420.  

    76. [76]

      DAI Wei-wei, LIU Da, FU Dong-long, ZHANG Zheng-pai, ZHANG Jun, XU Jing, HAN Yi-fan. Kinetics study of Fischer-Tropsch reaction to lower olefins over MnOx-promoted Fe/SiO2 catalysts[J]. J Chem Ind Eng, 2015,66(9):3444-3455.

    77. [77]

      WANG Gen-cun, ZHANG Kan, LIU Ping, HUI Hai-tao, LI Wen-huai, TAN Yi-sheng. Performance of Fe-Mn catalyst for preparation of light olefins in slurry bed reactor[J]. Petrochem Technol, 2012,41(11):1234-1238.  

    78. [78]

      YANG Z Q, PAN X L, WANG J H, BAO X H. FeN particles confined inside CNT for light olefin synthesis from syngas: Effects of Mn and K additives[J]. Catal Today, 2012,186(1):121-127. doi: 10.1016/j.cattod.2011.11.034

    79. [79]

      LIU Y, CHEN J F, BAO J, ZHANG Y. Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS Catal, 2015,6(6):3905-3909.

    80. [80]

      HUO C F, LI Y W, WANG J G, JIAO H J. Insight into CH4 formation in iron-catalyzed Fischer-Tropsch synthesis[J]. J Am Soc Chem, 2009,131(41):14713-14721. doi: 10.1021/ja9021864

    81. [81]

      PERRICHON V, CHARCOSSET H, BARRAULT J, FORQUY C. Influence of a partial dissolution of alumina during the preparation of iron catalysts on their catalytic properties for Fischer-Tropsch synthesis[J]. Appl Catal, 1983,7(1):21-29. doi: 10.1016/0166-9834(83)80235-8

    82. [82]

      RAO K R P M, HUGGUNS F E, MAHAJAN V, HUFFMAN G P, RAO V U S, BHATT B L, BUKUR D B, DAVIS B H, O'BRIEN R J. MÖssbauer spectroscopy study of iron-based catalysts used in Fischer-Tropsch synthesis[J]. Top Catal, 1995,2(1):71-78.  

    83. [83]

      WAN H J, WU B S, TAO Z C, LI T Z, AN X, XIANG H W, LI Y W. Study of an iron-based Fischer-Tropsch synthesis catalyst incorporated with SiO2[J]. J Mol Catal A, 2006,260(1/2):255-263.  

    84. [84]

      SUO H Y, WANG S G, ZHANG C H, XU J, WU B S, YANG Y, XIANG H W, LI Y W. Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts[J]. J Catal, 2012,286:111-123. doi: 10.1016/j.jcat.2011.10.024

    85. [85]

      WEI Jian, MA Xian-gang, FANG Chuan-yan, GE Qing-jie, XU Heng-yong. Iron-silica nanocomposites as a catalyst for the selective conversion of syngas to light olefins[J]. J Fuel Chem Technol, 2014,42(7):827-832.  

    86. [86]

      LI Jian-feng, TAO Yue-wu, ZHOU Xiao-feng, CHEN Qing-ling, YUAN Wei-kang. Performance of supported Fe based catalyst for synthesis of light alkenes from syngas[J]. Chem React Eng Technol, 2010,26(6):486-493.  

    87. [87]

      BRUCE L, HOPE G, TURNEY T W. Light olefin production from CO/H2 over silica supported Fe/Mn/K catalysts derived from a bimetallic carbonyl anion, [Fe2Mn (CO)12]-[J]. React Kinet Catal Lett, 1982,20(1):175-180.

    88. [88]

      VAN DILLEN A J, TERÖRDE R J A M, LENSVELD D J, GEUS J W, DE JONG K P. Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes[J]. J Catal, 2003,216(1/2):257-264.  

    89. [89]

      SMITH A K, THEOLIER A, BASSET J M, UGO R, COMMEREUC D, CHAUVIN Y. Hydrocarbon formation from metal carbonyl clusters supported on highly divided oxides[J]. J Am Chem Soc, 1978,100(8):2590-2591. doi: 10.1021/ja00476a076

    90. [90]

      STOOP F, VAN DER WIELE K. Formation of olefins from synthesis gas over silica-supported RuFe bimetallic catalysts[J]. Appl Catal, 1986,23(1):35-47. doi: 10.1016/S0166-9834(00)81450-5

    91. [91]

      BAKER B G, CLARK N J. Selective Fischer-Tropsch catalysts containing iron and lanthanide oxides[J]. Stud Surf Sci Catal, 1987,31:455-465. doi: 10.1016/S0167-2991(08)65428-2

    92. [92]

      BAKER B G, PARK T, CLARK N J, MCARTHUR H, SUMMERVILLE E. Catalysts and methods of their manufacture: US, 4610975[P]. 1986-09-09.

    93. [93]

      SOMMEN A P B, STOOP F, VAN DER WIELE K. Synthesis gas conversion on carbon supported iron catalysts and the nature of deactivation[J]. Appl Catal, 1985,14:277-288. doi: 10.1016/S0166-9834(00)84360-2

    94. [94]

      JONES V K, NEUBAUER L R, BARTHOLOMEW C H. Effects of crystallite size and support on the carbon monoxide hydrogenation activity/selectivity properties of iron/carbon[J]. J Phys Chem, 1986,20(20):4832-4839.  

    95. [95]

      ZHANG Jing-chang, WEI Guo-bin, CAO Wei-liang. Preparation and characterization of Fe/AC catalysts for synthesis of light olefins via carbon monoxide hydrogenation[J]. Chin J Catal, 2003,24(4):259-264.  

    96. [96]

      LU J Z, YANG L J, XU B L, WU Q, ZHANG D, YUAN S J, ZHAI Y, WANG X Z, FAN Y N, HU Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catal, 2014,4(2):613-621. doi: 10.1021/cs400931z

    97. [97]

      CHEN X Q, DENG D H, PAN X L, HU Y F, BAO X H. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins[J]. Chem Commun, 2014,51(1):217-220.  

    98. [98]

      SCHULTE H J, GRAF B, XIA W, MUHLER M. Nitrogen-and oxygen-functionalized multiwalled carbon nanotubes used as support in iron-catalyzed, high-temperature Fischer-Tropsch synthesis[J]. 2012, 4(3): 350-355.

    99. [99]

      CHEN H, ADESINA A A. Improved alkene selectivity in carbon monoxide hydrogenation over silica supported cobalt-molybdenum catalyst[J]. Appl Catal A: Gen, 1994,112(2):87-103. doi: 10.1016/0926-860X(94)80211-4

    100. [100]

      FRAENKEL D, GATES B C. Shape-selective Fischer-Tropsch synthesis catalyzed by zeolite-entrapped cobalt clusters[J]. J Am Chem Soc, 1980,102(7):2478-2480. doi: 10.1021/ja00527a067

    101. [101]

      FEYZI M, HASSANKHANI A. TiO2 supported cobalt-manganese nano catalysts for light olefins production from syngas[J]. J Energy Chem, 2013,22(4):645-652. doi: 10.1016/S2095-4956(13)60085-6

    102. [102]

      ZHOU W G, LIU J Y, WU X, CHEN J F, ZHANG Y. An effective Co/MnOx catalyst for forming light olefins via Fischer-Tropsch synthesis[J]. Catal Commun, 2015,60:76-81. doi: 10.1016/j.catcom.2014.10.027

    103. [103]

      TANG L P, SONG C L, YANG X L, LI M L, HU B. Promotion of Mn doped Co/CNTs catalysts for CO hydrogenation to light olefins[J]. Chin J Chem, 2013,31(6):826-830. doi: 10.1002/cjoc.v31.6

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    3. [3]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    7. [7]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    8. [8]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    9. [9]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    13. [13]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    14. [14]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    15. [15]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    16. [16]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    17. [17]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    18. [18]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

Metrics
  • PDF Downloads(29)
  • Abstract views(2893)
  • HTML views(626)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return