Citation: ZHUANG Ke, ZHANG Ya-ping, HUANG Tian-jiao, LU Bin, SHEN Kai. Sulfur-poisoning and thermal reduction regeneration of holmium-modified Fe-Mn/TiO2 catalyst for low-temperature SCR[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1356-1364. shu

Sulfur-poisoning and thermal reduction regeneration of holmium-modified Fe-Mn/TiO2 catalyst for low-temperature SCR

  • Corresponding author: ZHANG Ya-ping, amflora@seu.edu.cn
  • Received Date: 17 May 2017
    Revised Date: 10 August 2017

    Fund Project: The project was supported by the Key Research Program of Jiangsu Province(BE2015677)and Environmental Nonprofit Industry Research Subject(2016YFC0208102)Environmental Nonprofit Industry Research Subject 2016YFC0208102the Key Research Program of Jiangsu Province BE2015677

Figures(9)

  • The effect of SO2 on the low-temperature SCR activity and the thermal reduction regeneration for holmium-modified Fe-Mn/TiO2 catalyst were investigated by activity assessment and various characterization methods. The deposition of ammonium sulfate ((NH4)2SO4) on catalyst surface and the sulfuration of active component (MnSO4) were proved to be the main causes for the deactivation in the presence of SO2. The catalyst Fe0.3Ho0.1Mn0.4/TiO2 exhibited superior SO2 durability when the concentration of SO2 was lower than 0.04%, and the catalytic activity could markedly recover with the termination of sulfur-poisoning source. The deactivation behavior was irreversible when the concentration of SO2 was increased to 0.1% but the poisoned catalyst could be regenerated after thermal reduction (350 ℃) for 60 min by 5% NH3. The microstructure and physicochemical properties could be significantly restored after the thermal reduction regeneration. Moreover, the NOx conversion could return to about 80%.
  • 加载中
    1. [1]

      SHEN B, LIU T, ZHAO N, YANG X, DENG L. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. J Environ Sci-China, 2010,22(9):1447-1454. doi: 10.1016/S1001-0742(09)60274-6

    2. [2]

      JIANG B, DENG B, ZHANG Z, WU Z, TANG X, YAO S, LU H. Effect of Zr addition on the low-temperature SCR activity and SO2 tolerance of Fe-Mn/Ti catalysts[J]. J Phys Chem C, 2014,118(27):14866-14875. doi: 10.1021/jp412828p

    3. [3]

      KIJLSTRA W S, BIERVLIET M, POELS E K, BLIEK A. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl Catal B:Environ, 1998,16(4):327-337. doi: 10.1016/S0926-3373(97)00089-1

    4. [4]

      FAN Yun-zhu, CAO Fa-hai. Thermal decomposition kinetics of ammonium sulfate[J]. J Chem Eng Chin Univ, 2011(02):341-346.  

    5. [5]

      QI G S, YANG R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania[J]. Appl Catal B:Environ, 2003,44(3):217-225. doi: 10.1016/S0926-3373(03)00100-0

    6. [6]

      HUANG Hai-feng, YU He, ZHANG Feng, ZHOU Xiao-yan, LU Han-feng. Study on the sulfur tolerance and regeneration of Mn1FexCe1-x/TiO2 catalyst for low temperature NH3-selective catalytic reduction[J]. Proc CSEE, 2011,31(35):29-34.  

    7. [7]

      HUANG J, TONG Z, HUANG Y, ZHANG J. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica[J]. Appl Catal B:Environ, 2008,78(3/4):309-314.  

    8. [8]

      LIU F, HE H. Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst:Reaction mechanism and H2O/SO2 inhibition mechanism study[J]. Catal Today, 2010,153(3/4):70-76.  

    9. [9]

      JIANG B Q, WU Z B, LIU Y, LEE S C, HO W K. DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2[J]. J Phys Chem C, 2010,114(11):4961-4965. doi: 10.1021/jp907783g

    10. [10]

      MA Jian-rong, HUANG Zhang-gen, LIU Zhen-yu, GUO Shi-jie. Effect of regeneration method on activity for simultaneous removal of SO2 and NO over V2O5/AC catalyst-sorbent[J]. Chin J Catal, 2005,26(6):463-469.  

    11. [11]

      SHI Y, SHU H, ZHANG Y, FAN H, ZHANG Y, YANG L. Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts[J]. Fuel Process Technol, 2016,150:141-147. doi: 10.1016/j.fuproc.2016.05.016

    12. [12]

      YANG Chao, CHENG Hua, HUANG Bi-chun. Review of de NOx catalysts with SO2 and H2O poisoning resistance for low-temperature NH3-SCR[J]. Chem Ind Eng Prog, 2014,33(4):907-913.  

    13. [13]

      ZHU Z P, NIU H X, LIU Z Y, LIU S J. Decomposition and reactivity of NH4HSO4 on V2O5/AC catalysts used for NO reduction with ammonia[J]. J Catal, 2000,195(2):268-278. doi: 10.1006/jcat.2000.2961

    14. [14]

      XU W, HE H, YU Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J]. J Phys Chem C, 2009,113(11):4426-4432. doi: 10.1021/jp8088148

    15. [15]

      ZHANG L, LI L, CAO Y, YAO X, GE C, GAO F, DENG Y, TANG C, DONG L. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3[J]. Appl Catal B:Environ, 2015,165:589-598. doi: 10.1016/j.apcatb.2014.10.029

    16. [16]

      HUANG J, TONG Z, HUANG Y, ZHANG J. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica[J]. Appl Catal B:Environ, 2008,78(3/4):309-314.  

    17. [17]

      TOPSOE N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy[J]. Science, 1994,265(5176):1217-1219. doi: 10.1126/science.265.5176.1217

    18. [18]

      RAMIS G, YI L, BUSCA G. Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3. An FT-IR study[J]. Catal Today, 1996,28(4):373-380. doi: 10.1016/S0920-5861(96)00050-8

    19. [19]

      TSYGANENKO A A, POZDNYAKOV D V, FILIMONOV V N. Infrared study of surface species arising from ammonia adsorption on oxide surfaces[J]. J Mol Struct, 1975,291(2):299-318.  

    20. [20]

      LIETTI L, RAMIS G, BERTI F, TOLEDO G, ROBBA D, BUSCA G, FORZATTI P. Chemical, structural and mechanistic aspects on NOx SCR over commercial and model oxide catalysts[J]. Catal Today, 1998,42(1/2):101-116.  

    21. [21]

      MATRALIS H K, CIARDELLI M, RUWET M, GRANGE P. Vanadia catalysts supported on mixed TiO2-Al2O3 supports:Effect of composition on the structure and acidity[J]. J Catal, 1995,157(2):368-379. doi: 10.1006/jcat.1995.1302

    22. [22]

      ZHANG Y, GUO W, WANG L, SONG M, YANG L, SHEN K, XU H, ZHOU C. Characterization and activity of V2O5-CeO2/TiO2-ZrO2 catalysts for NH3-selective catalytic reduction of NOx[J]. Chin J Catal, 2015,37(10):1701-1710.  

    23. [23]

      LONG R Q, YANG R T. Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-exchanged TiO2-pillared clay catalysts[J]. J Catal, 1999,186(2):254-268. doi: 10.1006/jcat.1999.2558

    24. [24]

      LARRUBIA M A, RAMIS G, BUSCA G. An FT-IR study of the adsorption of urea and ammonia over V2O5-MoO3-TiO2 SCR catalysts[J]. Appl Catal B:Environ, 2000,27(3):L145-L151. doi: 10.1016/S0926-3373(00)00150-8

    25. [25]

      GUTIERREZ-ALEJANDRE A, RAMIREZ J, BUSCA G. A vibrational and spectroscopic study of WO3/TiO2-Al2O3 catalyst precursors[J]. Langmuir, 1998,14(3):630-639. doi: 10.1021/la970993n

    26. [26]

      LUO Hong-cheng, HUANG Bi-chun, FU Ming-li, WU Jun-liang, YE Dai-qi. SO2 Deactivation mechanism of MnOx/MWCNTs catalyst for low-temperature selective catalytic reduction of NOx by ammonia[J]. Acta Phys-Chim Sin, 2012(09):2175-2182. doi: 10.3866/PKU.WHXB201207062

  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    10. [10]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    16. [16]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    18. [18]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    19. [19]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    20. [20]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

Metrics
  • PDF Downloads(2)
  • Abstract views(1773)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return