Citation: ZOU Chan, WANG Chun-bo, XING Jia-ying. Reaction mechanism of arsenic and nitrous oxides during coal combustion[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(2): 138-143. shu

Reaction mechanism of arsenic and nitrous oxides during coal combustion

  • Corresponding author: ZOU Chan, hbdlzch@163.com
  • Received Date: 11 September 2018
    Revised Date: 29 November 2018

    Fund Project: the National Key R & D Program of China 2016YFB0600701The project was supported by the National Key R & D Program of China (2016YFB0600701) and the Fundamental Research Funds for the Central Universities (2017XS122)the Fundamental Research Funds for the Central Universities 2017XS122

Figures(4)

  • The reaction mechanism between arsenic and nitrous oxides (N2O, NO2 and NO) was investigated by applying density functional theory in quantum chemistry. The geometries of reactants, intermediates, transition states and products for each reaction were optimized. Frequency analysis was applied to verify those geometries, and the authenticity of transition states were confirmed by intrinsic reaction coordinate analysis (IRC). The stationary points of the single point energy were calculated at B2PLYP level, and the kinetic analysis was conducted to further reveal the reaction mechanism. Results show that the energy barrier of the reactions between arsenic and nitrous oxides (N2O, NO2 and NO) is 78.45, 2.58 and 155.85 kJ/mol, respectively. The reaction rate increases in the range of 298-1800 K and keeps at a high level (>1012 cm3/(mol·s)), although the temperature has a tiny impact on the reaction of arsenic with NO2 as a result of a low energy barrier, indicating that the reaction is easy to take place. Furthermore, it is found that the rate of reaction between arsenic and N2O or NO has a rapid increase at 298-900 K, and then the rate increment becomes less with the further increase of temperature.
  • 加载中
    1. [1]

      LI Wen-xiu, WANG Bao-feng, REN Jie, ZHANG Kai, YANG Feng-ling, CHENG Fang-qin. Effect of mineral matter on emissions of SO2 and NOx during combustion of lean coal in O2/CO2 atmosphere[J]. J Fuel Chem Technol, 2017,45(10):1200-1208. doi: 10.3969/j.issn.0253-2409.2017.10.007 

    2. [2]

      WANG C, LIU H, ZHANG Y, ZOU C, ANTHONY E J. Review of arsenic behavior during coal combustion:Volatilization, transformation, emission and removal technologies[J]. Prog Energy Combust, 2018,68:1-28. doi: 10.1016/j.pecs.2018.04.001

    3. [3]

      LIU H, PAN W, WANG C, ZHANG Y. Volatilization of arsenic during coal combustion based on isothermal thermogravimetric analysis at 600-1500℃[J]. Energy Fuels, 2016,30(8):6790-6798. doi: 10.1021/acs.energyfuels.6b00816

    4. [4]

      LIU H, WANG C, ZOU C, ZHANG Y, WANG J. Simultaneous volatilization characteristics of arsenic and sulfur during isothermal coal combustion[J]. Fuel, 2017,203:152-161. doi: 10.1016/j.fuel.2017.04.101

    5. [5]

      TANG Q, LIU G J, ZHOU C C, SUN R Y. Distribution of trace elements in feed coal and combustion residues from two coal-fired power plants at Huainan, Anhui, China[J]. Fuel, 2013,107:315-322. doi: 10.1016/j.fuel.2013.01.009

    6. [6]

      ZHAO Y, ZHANG J, HUANG W, WANG Z, LI Y, SONG D, ZHAO F, ZHENG C. Arsenic emission during combustion of high arsenic coals from Southwestern Guizhou, China[J]. Energy Convers Manage, 2008,49(4):615-624. doi: 10.1016/j.enconman.2007.07.044

    7. [7]

      ZIELINSKI R A, FOSTER A L, MEEKER G P, BROWNFIELD I K. Mode of occurrence of arsenic in feed coal and its derivative fly ash, Black Warrior Basin, Alabama[J]. Fuel, 2007,86(4):560-572. doi: 10.1016/j.fuel.2006.07.033

    8. [8]

      CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel, 2009,88:539-546. doi: 10.1016/j.fuel.2008.09.028

    9. [9]

      LIU Ying-hui, ZHENG Chu-guang, YOU Xiao-qing, GUO Xin. Interaction between most volatile toxic trace elements during coal combustion[J]. J Combust Sci Technol, 2001,7(4):243-247. doi: 10.3321/j.issn:1006-8740.2001.04.007

    10. [10]

      URBAN D R, WILCOX J. A theoretical study of properties and reactions involving arsenic and selenium compounds present in coal combustion flue gases[J]. J Phys Chem A, 2006,110(17):5847-5852. doi: 10.1021/jp055564+

    11. [11]

      MONAHAN-PENDERGAST M, PRZYBYLEK M, LINDBLAD M, WILCOX J. Theoretical predictions of arsenic and selenium species under atmospheric conditions[J]. Atmos Environ, 2008,42(10):2349-2357. doi: 10.1016/j.atmosenv.2007.12.028

    12. [12]

      URBAN D R, WILCOX J. Theoretical study of the kinetics of the reactions Se + O2 → Se + O and As + HCl → AsCl + H[J]. J Phys Chem A, 2006,110(28):8797-8801. doi: 10.1021/jp0628986

    13. [13]

      LEI Ming, HUANG Xing-zhi, WANG Chun-bo. NO emission characteristics of typical coals under O2/CO2/H2O atmosphere at intermediate and high temperatures[J]. J Chin Soc Power Eng, 2017,37(6):432-439.  

    14. [14]

      WANG Chun-bo, YUE Shuang, XU Xu-bin, LI Yi-peng. NOx release of char in constant temperature combustion under O2/CO2 atmosphere[J]. J China Coal Soc, 2018,43(1):257-264.  

    15. [15]

      XIAO Hai-ping, ZHOU Jun-hu, LIU Jian-zhong, SUN Bao-ming, YE Li-ping. Effect mechanism of existence pattern of sulphur on reduction of NO[J]. J Fuel Chem Technol, 2008,36(3):381-384. doi: 10.3969/j.issn.0253-2409.2008.03.024 

    16. [16]

      LIU Jing, ZHENG Chu-guang, QIU Jian-rong. Study on quantum chemistry calculation method of mercury reactions in combustion flue gas[J]. J Eng Thermophys, 2007,28(3):519-522. doi: 10.3321/j.issn:0253-231X.2007.03.050

    17. [17]

      AWUAHA J B, DZADE N Y, TIA R, ADEI E, KWAKYE-AWUAHAD B, CATLOW C R A, DE LEEUW N H. A density functional theory study of arsenic immobilization by the Al(iii)-modified zeolite clinoptilolite[J]. Phys Chem Chem Phys, 2016,18(16):11297-11305. doi: 10.1039/C6CP00190D

    18. [18]

      FRISCH M J, TRUCKS G W, SCHLEGEL H B. Gaussian 09, Revision D.01[J]. Gaussian, Inc., Wallingford, CT, 2009.

    19. [19]

      ZHANG H, LIU J, SHEN J, JIANG X. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion[J]. Energy, 2015,82(C):312-321.

    20. [20]

      SCHRÖDER B, SEBALD P, STEIN C, WESER O, BOTSCHWINA P. Challenging high-level ab initio rovibrational spectroscopy:The nitrous oxide molecule[J]. Z Phys Chem, 2015,229(10/12):1663-1690.

    21. [21]

      BORISENKO K B, KOLONITS M, ROZSONDAI B, HARGITTAI I. Electron diffraction study of the nitrogen dioxide molecular structure at 294, 480, and 691 K[J]. J Mol Struct, 1997,413-414:121-131. doi: 10.1016/S0022-2860(96)09588-9

    22. [22]

      MARSDEN C J, SMITH B J. AB initio force constants:A cautionary tale concerning nitrogen oxides[J]. J Mol Struct:Theochem, 1989,187:337-357. doi: 10.1016/0166-1280(89)85174-7

    23. [23]

      EVENSON K M, WELLS J S, RADFORD H E. Infrared resonance of OH with the H2O laser:A galactic maser pump?[J]. Phys Rev Lett, 1970,25(4):199-202. doi: 10.1103/PhysRevLett.25.199

    24. [24]

      MIZUSHIMA M. Molecular parameters of OH free radical[J]. Phys Rev A, 1972,5(1):143-157. doi: 10.1103/PhysRevA.5.143

    25. [25]

      WANG Peng-qian, WANG Chang-an, DU Yong-bo, ZHANG Long-fei, CHE De-fu. Experimental investigation on the NO2 reduction property under O2/CO2 combustion condition[J]. J Xi'an Jiaotong Univ, 2017,51(5):16-22.  

    26. [26]

      JIAO A, ZHANG H, LIU J, SHEN J, JIANG X. The role of CO played in the nitric oxide heterogeneous reduction:A quantum chemistry study[J]. Energy, 2017,141:1538-1546. doi: 10.1016/j.energy.2017.11.115

  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    8. [8]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    11. [11]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    13. [13]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    14. [14]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    15. [15]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    16. [16]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    17. [17]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    19. [19]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    20. [20]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

Metrics
  • PDF Downloads(2)
  • Abstract views(1267)
  • HTML views(176)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return