Citation: JING Bu-qin, LI Jun-fen, QIN Zhang-feng. Selective oxidation of cyclohexane over Co-APO-5:Effects of solvent and modification method on the catalytic performance[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(10): 1249-1258. shu

Selective oxidation of cyclohexane over Co-APO-5:Effects of solvent and modification method on the catalytic performance

  • Corresponding author: LI Jun-fen, lijunfen@sxicc.ac.cn
  • Received Date: 19 April 2016
    Revised Date: 28 July 2016

    Fund Project: 山西省自然科学基金 201601D202014,2015021003国家自然科学基金 21403268,21603254CAS/SAFEA创新团队的国际合作项目  

Figures(10)

  • A series of Co-APO-5 molecular sieves were prepared and used as the catalysts in the selective oxidation of cyclohexane; the effects of solvent and modification method on the catalytic performance of Co-APO-5 were investigated. The results illustrated that polar solvents containing π-bonds are favorable for the oxidation reaction and the conversion of cyclohexane increases with the increase of solvent polarity. The introduction of Si and F leads to a decrease of the tetrahedral cobalt content in the Co-APO-5 framework. However, introducing F can improve the crystallinity of Co-APO-5, whereas adding Si may promote the oxidation and reduction of cobalt species and then enhance the catalytic activity in oxidation. In general, the activity of Co-APO-5 catalysts is related to the content of tetrahedral cobalt in the framework, suggesting that the framework Co(Ⅱ) is probably the catalytically active species for the oxidation of cyclohexane.
  • 加载中
    1. [1]

      DUGAL M, SANKAR G, RAJA R, THOMAS J M. Designing a heterogeneous catalyst for the production of aipic acid by aerial oxidation of cyclohexane[J]. Angew Chem Int Ed, 2000,9(3):310-2313.  

    2. [2]

      THOMAS J M, RAJA R. Innovations in oxidation catalysis leading to a sustainable society[J]. Catal Today, 2006,117(1/3):22-31.

    3. [3]

      RETCHER B, COSTA J S, TANG J K, HAGE R, GAMEZ P, REEDIJK J. HPW and supported HPW catalyzed condensation of aromatic aldehydes with aniline:Synthesis of DATPM derivatives[J]. J Mol Catal A:Chem, 2008,286(1/2):21-30.

    4. [4]

      ZOU G Q, ZHONG W Z, XU Q, XIAO J F, LIU C, LI Y Q, MAO L Q, KIRK S, YIN D L. Oxidation of cyclohexane to adipic acid catalyzed by Mn-doped titanosilicate with hollow structure[J]. Catal Commun, 2015,58:46-52. doi: 10.1016/j.catcom.2014.08.026

    5. [5]

      HARTMAN M, KEVAN L. Transition-metal ions in aluminophosphate and silicoaluminophosphate molecular sieves:Location, interaction with adsorbates and catalytic properties[J]. Chem Rev, 1999,99(3):635-664. doi: 10.1021/cr9600971

    6. [6]

      RAJA R, THOMAS J M, XU M, HARRIS K D M, GREENHILL HOOPER M, QUILL K. Highly efficient one-step conversion of cyclohexane to adipic acid using single-site heterogeneous catalysts[J]. Chem Commun, 2006,4:448-450.

    7. [7]

      RAJA R, SANKAR G, THOMAS J M. Powerful redox molecular sieve catalysts for the selective oxidation of cyclohexane in air thomas[J]. J Am Chem Soc, 1999,121(50):11926-11927. doi: 10.1021/ja9935052

    8. [8]

      CHEN J D, SHELDON R A. Selective oxidation of hydrocarbons with O2 over chromium aluminophosphate-5 molecular sieve[J]. J Catal, 1995,153(1):1-8. doi: 10.1006/jcat.1995.1101

    9. [9]

      MODEN B, ZHAN B Z, DAKKA J, SANTIESTEBAN J G, IGLESIA E. Kinetics and mechanism of cyclohexane oxidation on MnAPO-5 catalysts[J]. J Catal, 2006,239(2):390-401. doi: 10.1016/j.jcat.2006.02.006

    10. [10]

      ZHANG R Z, QIN Z F, DONG M, WANG G F, WANG J G. Selective oxidation of cyclohexane in supercritical carbon dioxide over CoAPO-5 molecular sieves[J]. Catal Today, 2005,110(3/4):351-356.

    11. [11]

      ZHOU L P, LU T L, XU J L, CHEN M Z, ZHANG C F, CHEN C, YANG X M, XU J. Synthesis of hierarchical MeAPO-5 molecular sieves-Catalysts for the oxidation of hydrocarbons with efficient mass transport[J]. Microporous Mesoporous Mater, 2012,161:76-83. doi: 10.1016/j.micromeso.2012.04.058

    12. [12]

      LI L, LI H, JIN C, WANG X C, JI W J, PAN Y, VAN DER KNAAP T, VAN DER ROLAND S, AU C T. Surface cobalt silicate and CoOx cluster anchored to SBA-15:Highly efficient for cyclohexane partial ocidation[J]. Catal Lett, 2010,136(1):20-27.

    13. [13]

      SCHUCHARDT U, CARDOSO D, SERCHELI R, PERIRA R, CRUZ R S DA, GUERRIRO M C, MANDELLI D, SPINACE E V, PIRES E L. Cyclohexane oxidation continues to be a challenge[J]. Appl Catal A:Gen, 2001,211(1):1-17. doi: 10.1016/S0926-860X(01)00472-0

    14. [14]

      CONCEPCION P, CORMA A, LOPEZ NIETO J M, PEREZ PARIENTE J. Selective oxidation of hydrocarbons on V-and/or Co-containing aluminophosphate (MeAPO-5) using molecular oxygen[J]. Appl Catal A:Gen, 1996,143(1):17-28. doi: 10.1016/0926-860X(96)00068-3

    15. [15]

      ZHOU L P, XU J, CHEN C, WANG F, LI X Q. Synthesis of Fe, Co, and Mn substituted AlPO-5 molecular sieves and their catalytic activities in the selective oxidation of cyclohexane[J]. J Porous Mater, 2008,15(1):7-12. doi: 10.1007/s10934-006-9045-7

    16. [16]

      ŠŠPONER J, ŬEJKA J, DEDECEK J, WICHTERLOVA B. Coordination and properties of cobalt in the molecular sieves CoAPO-5 and-11[J]. Microporous Mesoporous Mater, 2000,37(1/2):117-127.

    17. [17]

      DONG M, WANG G F, QIN Z F, WANG J G, LIU T, YUAN S P, JIAO H J. A comparative investigation of Co2+ and Mn2+ incorporation into aluminophosphates by in situ XAS and DFT computation[J]. J Phys Chem A, 2007,111(8):1515-1522. doi: 10.1021/jp066408l

    18. [18]

      MASTERS A F, BEATTIE J K, ROA A L. Synthesis of a CrCoAPO-5(AFI) molecular sieve and its activity in cyclohexane oxidation in the liquid phase[J]. Catal Lett, 2001,75(3):159-162.

    19. [19]

      WECKHUYSEN B M, RAO RAMACHANDRA R, MARTENS J A, SCHOONHEYDT R A. Transition metal ions in microporous crystalline aluminophosphates:Isomorphous Substitution[J]. Eur J Inorg Chem, 1999,1999(4):565-577. doi: 10.1002/(ISSN)1099-0682

    20. [20]

      THOMSON S, LUCA V, HOWE R. Framework Co (Ⅱ) in CoAPO-5[J]. Phys Chem Chem Phys, 1999,1(1):615-619.

    21. [21]

      JHUNG S H, HWANG Y K, CHANG J S, PARK S E. Effect of acidity and anions on synthesis of AFI molecular sieves in wide pH range of 3-10[J]. Microporous Mesoporous Mater, 2004,67(2/3):151-157.

    22. [22]

      MODEN B, OLIVIERO L, DAKKA J, SANTIESTEBAN J G, IGLESIA E. Structural and functional characterization of redox Mn and Co sites in AlPO materials and their role in alkane oxidation catalysis[J]. J Phys Chem B, 2004,108(18):5552-5563. doi: 10.1021/jp037257e

    23. [23]

      ROQUE-MALHERBE R, LOPEZ-CORDERO R, GONZALES-MORALES J A, OFIATE-MARTINEZ J, CARRERAS-GRAEIAL M. A comparative study of MeAPO molecular sieves with AFI structure type[J]. Zeolites, 1993,13(6):481-484. doi: 10.1016/0144-2449(93)90124-L

    24. [24]

      OKAMOTO M, LUO L, LABINGER J A, DAVIS M E. Oxydehydrogenation of propane over vanadyl ion-containing VAPO-5 and CoAPO-5[J]. J Catal, 2000,192(1):128-136. doi: 10.1006/jcat.2000.2840

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    3. [3]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    4. [4]

      Jian LiJinjin ChenQi-Long HuZhen WangXiao-Feng Xiong . Recent progress of chemical methods for lysine site-selective modification of peptides and proteins. Chinese Chemical Letters, 2025, 36(5): 110126-. doi: 10.1016/j.cclet.2024.110126

    5. [5]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    6. [6]

      Wenfeng ZangYixin SunJingyi ZhangYanzhong HaoQianhui JinHongying XiaoZuo ZhangXianbao ShiJin SunZhonggui HeCong LuoBingjun Sun . Two-tailed modification module tuned steric-hindrance effect enabling high therapeutic efficacy of paclitaxel prodrug nanoassemblies. Chinese Chemical Letters, 2025, 36(5): 110230-. doi: 10.1016/j.cclet.2024.110230

    7. [7]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    8. [8]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    9. [9]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    10. [10]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    11. [11]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    12. [12]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    13. [13]

      Xi Feng Ding-Yi Hu Zi-Jun Liang Mu-Yang Zhou Zhi-Shuo Wang Wen-Yu Su Rui-Biao Lin Dong-Dong Zhou Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540

    14. [14]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    15. [15]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    16. [16]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    17. [17]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    18. [18]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    19. [19]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    20. [20]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

Metrics
  • PDF Downloads(0)
  • Abstract views(345)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return