Citation: MEI Yan-gang, WANG Zhi-qing, FANG Hui-bin, FENG Rong-tao, FANG Yi-tian. Comparison of leaching behaviors of aluminum in ash from combustion and catalytic gasification[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(4): 394-399. shu

Comparison of leaching behaviors of aluminum in ash from combustion and catalytic gasification

  • Corresponding author: WANG Zhi-qing, qcumt@sxicc.ac.cn
  • Received Date: 10 November 2016
    Revised Date: 11 January 2017

    Fund Project: the Research Supported by the CAS/SAFEA International Partnership Program for Creative Research Teams and Youth Innovation Promotion Association 2014156the National Natural Science Foundation of China 21676289

Figures(9)

  • The leaching behaviors of aluminum in ash from combustion and catalytic gasification, and effects of Na2CO3 addition (0-15%), temperature (600-1 000℃) on Al leaching behaviors and mineral composition were investigated. The compositions of ash from combustion and gasification, and acid leaching residue were investigated by XRD. The results shows that the combustion ash is predominantly composed of mullite, while that from catalytic gasification is sodium aluminum silicate ((Na2O)0.33NaAlSiO4). The Al extraction yield of combustion ash only reaches 40% at leaching conditions of 6 mol/L H2SO4, 60℃ and 30 min, while that of catalytic gasification ash with 10% Na2CO3 addition can reach 88%. The catalytic gasification with Na2CO3 addition can achieve higher Al extraction yield.
  • 加载中
    1. [1]

      DU Zi-chuan, LI Hui-quan, LI Shao-peng. Reaction mechanism of desilification process of high aluminum fly ash by alkali solution[J]. Chin J Process Eng, 2011,11(3):442-447.  

    2. [2]

      NEUPANE G, DONAHOE R J. Leachability of elements in alkaline and acidic coal fly ash samples during batch and column leaching tests[J]. Fuel, 2013,104:758-770. doi: 10.1016/j.fuel.2012.06.013

    3. [3]

      PARK H C, PARK Y J, STEVENS R. Synthesis of alumina from high purity alum derived from coal fly ash[J]. Mater Sci Eng, 2004,367(1/2):166-170.  

    4. [4]

      YAO Z T, JI X S, SARKER P K, TANG J H, GE L Q, XIA M S, XI Y Q. A comprehensive review on the applications of coal fly ash[J]. Earth-Sci Rev, 2015,141:105-121. doi: 10.1016/j.earscirev.2014.11.016

    5. [5]

      WANG Lei, MA Hong-wen. Experimental research on preparation of high specific surface area SiO2 from fly ash[J]. Bull Chin Ceram Soc, 2006(2):1-7.  

    6. [6]

      SHEMI A, MPANA R N, NDLOVU S, VANDYK L D, SIBANBA V, SEEPE L. Alternative techniques for extracting alumina from coal fly ash[J]. Miner Eng, 2012,34:30-37. doi: 10.1016/j.mineng.2012.04.007

    7. [7]

      WU C Y, YU H F, ZHANG H F. Extraction of aluminum by pressure acid-leaching method from coal fly ash[J]. Trans Nonferrous Met Soc, China, 2012,22(9):2282-2288. doi: 10.1016/S1003-6326(11)61461-1

    8. [8]

      BO Chun-li, ZHENG Shi-li. Leaching behaviors of aluminum and silicon compounds in aluminum-rich fly ash in dilute alkaline solution[J]. Chin J Process Eng, 2012,12(4):613-617.  

    9. [9]

      DONG Zhi-fang, CHUN Yan-fei, LI Ying-jie. Experimental study on extraction of aluminium ferric from coal fly ash[J]. Light Metal, 2009,1(1):13-16.  

    10. [10]

      YAO Z T, XIA M S, SARKER P K, CHEN T. A review of the alumina recovery from coal fly ash with a focus in China[J]. Fuel, 2014,120:74-85. doi: 10.1016/j.fuel.2013.12.003

    11. [11]

      WANG R C, ZHAI Y C, NING Z Q. Thermodynamics and kinetics of alumina extraction from fly ash using an ammonium hydrogen sulfate roasting method[J]. Int J Miner Metal Mater, 2014,21(2):144-149. doi: 10.1007/s12613-014-0877-x

    12. [12]

      GUO Y, YAN K, CUI L, CHENG F, LOU H H. Effect of Na2CO3 additive on the activation of coal gangue for alumina extraction[J]. Inter J Miner Process, 2014,131:51-57. doi: 10.1016/j.minpro.2014.07.001

    13. [13]

      GUO Y, LI Y, CHENG F, WANG M, WANG X. Role of additives in improved thermal activation of coal fly ash for alumina extraction[J]. Fuel Process Technol, 2013,110:114-121. doi: 10.1016/j.fuproc.2012.12.003

    14. [14]

      MAO Yan-dong, JIN Ya-dan, LI Ke-zhong, BI Ji-cheng, LI Jin-lai, XIN Feng. Sintering behaviors of different coal ashes in catalytic gasification process[J]. J Fuel Chem Technol, 2015,43(4):402-409.  

    15. [15]

      WEI Jun-tao, DING Lu, ZHOU Zhi-jie, YU Guang-suo. In-situ analysis of catalytic gasification reaction characteristics of coal char-CO2 with K2CO3 additive[J]. J Fuel Chem Technol, 2015,43(11):1311-1319.  

    16. [16]

      DING L, ZHANG Y, WANG Z, HUANG J, FANG Y. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char[J]. Bioresour Technol, 2014,173:11-20. doi: 10.1016/j.biortech.2014.09.007

    17. [17]

      WANG Y, WANG Z, HUANG J, FANG Y. Catalytic gasification activity of Na2CO3 and comparison with K2CO3 for a high-aluminum coal char[J]. Energy Fuels, 2015,29(11):6988-6998. doi: 10.1021/acs.energyfuels.5b01537

  • 加载中
    1. [1]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    2. [2]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    7. [7]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    8. [8]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    9. [9]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    18. [18]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    19. [19]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(1)
  • Abstract views(1386)
  • HTML views(260)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return