Citation: GAO Jun-hua, LIU Ping, JI Ke-ming, HAN Li-hua, LIU Zeng-hou, ZHOU Hao, ZHANG Kan. Synthesis and characterization of GaZSM-5 with different Si/Ga molar ratio and its catalytic performance in the MTH reaction[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(4): 465-472. shu

Synthesis and characterization of GaZSM-5 with different Si/Ga molar ratio and its catalytic performance in the MTH reaction

  • Corresponding author: ZHANG Kan, zhangkan@sxicc.ac.cn
  • Received Date: 27 November 2017
    Revised Date: 7 February 2018

    Fund Project: The project was supported by the Chinese Academy of Sciences Strategic Priority Research Program (XDA-07070400)The project was supported by the Chinese Academy of Sciences Strategic Priority Research Program XDA-07070400

Figures(7)

  • GaZSM-5 molecular sieve catalysts with different Si/Ga molar ratios were prepared with hydrothermal synthesis method followed by acid exchange and pelletization. The catalyst samples were characterized using XRD, SEM, FT-IR, XPS, ICP, low temperature N2 physical adsorption and desorption, NH3-TPD and Py-FTIR. The catalytic performance in the reaction of methanol to hydrocarbons was evaluated in a fixed bed reactor system. The results indicated that there were two kinds of gallium species, i. e. Ga in the framework Ga and Ga2O3 species on the crystal surface. The catalysts synthesized from SiO2/Ga2O3 (60/1) gel with modest acidity (0.62 mmol NH3/g and the ratio of B/L 4.88) and large mesopore volume of 0.51 cm3/g had the best catalytic stability. Under the same reaction conditions, the lifetime of GaZSM-5 catalyst was 456 h. The acid strength of GaZSM-5 was weaker than that of AlZSM-5, which could inhibit the coke formation. The intercrystalline mesopores of the nano GaZSM-5 crystal improved the diffusion property as well the catalyst stability. The GaZSM-5 lifetime was prolonged by 120 h.
  • 加载中
    1. [1]

      REN Rui-xia, LIU Shu, SONG Wen-wen, LIU Hai-lian. Research advance on the synthesis and application of ZSM-5 zeolite[J]. Sci Technol Chem Ind, 2011,19(1):55-60.  

    2. [2]

      ZHANG Wei, REN Li-jun, GUAN Chong, QI Jing. The overview on synthesis, modification and application of small crystal ZSM-5 molecular sieve[J]. Guangzhou Chem Ind, 2012,40(2):20-23.  

    3. [3]

      YANG Shao-hua, CUI Ying-de, CHEN Xun-jun, TU Xing. Development of synthesis and surface modification of ZSM-5 zeolite molecular sieves[J]. Adv Fine Petrochem, 2003,4(4):47-50.  

    4. [4]

      WANG Jun, CHEN De-min, GU Hai-wei, TENG Hui, REN Xiao-qian. Advances in preparation and catalytic application of mesoporous ZSM-5 zeolitic materials[J]. J Nanjing Univ Technol (Nat Sci Ed), 2010,32(4):100-104.  

    5. [5]

      STOCKER M. Methanol-to-hydrocarbons:Catalytic materials and their behavior[J]. Microporous Mesoporous Mater, 1999,29(1/2):3-48.  

    6. [6]

      KEIL F J. Methanol-to-hydrocarbons:Process technology[J]. Microporous Mesoporous Mater, 1999,29(1/2):49-66.  

    7. [7]

      YAO Min, HU Si, WANG Jian, DOU Tao, WU Yong-ping. Size effect of HZSM-5 zeolite on catalytic conversion of methanol to propylene[J]. Acta Phys Chim Sin, 2012,28(9):2122-2128.  

    8. [8]

      WANG Sen, CHEN Yan-yan, WEI Zhi-hong, QIN Zhang-feng, LI Jun-fen, DONG Mei, FAN Wei-bin, WANG Jian-guo. Recent reaearch progresses in the effect of framework structure and acidity of zeolites on their catalytic performance in methanol to olefins (MTO)[J]. J Fuel Chem Technol, 2015,43(10):1202-1214. doi: 10.3969/j.issn.0253-2409.2015.10.008 

    9. [9]

      WANG Jin-ying, LI Wen-huai, HU Jin-xian. Study of methanol to aromatics on ZnHZSM-5 catalyst[J]. J Fuel Chem Technol, 2009,37(5):607-612.  

    10. [10]

      LU Ming, SUN Hong-min, GUO Yu, YANG Wei-min, ZHU Zi-bin. Study on deactivation process and activity stability of ZSM-5 zeolite[J]. Acta Petrol Sin (Pet Process Sect), 2001,17(4):59-63.  

    11. [11]

      ILIAS S, BHAN A. Mechanism of the catalytic conversion of methanol to hydrocarbons[J]. ACS Catal, 2013,44(3):18-31.  

    12. [12]

      QIAN Zhen, ZHAO Wen-ping, GENG Yu-xia, MA Guo-dong, SHI Hua. Advance in research on the mechanism of methanol conversion to hydrocarbons[J]. J Mol Catal (China), 2015,29(6):593-600.  

    13. [13]

      SCHULZ H. "Coking" of zeolites during methanol conversion:Basic reactions of the MTO-, MTP-and MTG processes[J]. Catal Today, 2010,154(3/4):183-194.  

    14. [14]

      KIM J, CHOI M, RYOO R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. J Catal, 2010,269(1):219-228. doi: 10.1016/j.jcat.2009.11.009

    15. [15]

      SUN Shu-hong, WANG Ning-sheng, YAN Wei-jian. Advances in synthesis and modification of ZSM-5 zeolite[J]. Ind Catal, 2007,15(6):6-10.  

    16. [16]

      LI Guo-lin, LIU Yan-sheng, HAO Dai-jun. Study of ZSM-5 molecular sieve catalysts with different Si/Ga ratios for methanol to gasoline with one step method[J]. Ind Catal, 2015,23(10):792-797. doi: 10.3969/j.issn.1008-1143.2015.10.013

    17. [17]

      LUO Li-wen, LÜ Ren-qing. Impact of steam treatment on acidity and pore texture of HZSM-5[J]. J Fuel Chem Technol, 2004,32(5):606-610.  

    18. [18]

      WEI Y, PARMENTIER T E, JONG K P, ZECEVIC J. Tailoring and visualizing the pore architecture of hierarchical zeolites[J]. Chem Soc Rev, 2015,44(20):7234-7261. doi: 10.1039/C5CS00155B

    19. [19]

      CHENG Sen, ZHANG Ji-fa, PANG Wen-qin, QIU Shi-lun, YUE Yong. Investigation on pore structure and adsorption properties of hetero-atom containing ZSM-5 type zeolites[J]. Chin J Catal, 1985,6(4):381-384.  

    20. [20]

      TAO Y, KANOH H, ABRAMS L, KANEKO K. Mesopore-modified zeolites:Preparation, characterization, and applications[J]. Chem Rev, 2006,106(3):896-910. doi: 10.1021/cr040204o

    21. [21]

      LIU Ming, XIANG Shou-he. Studies on the synthesis of zeolite ZSM-5 with different morphology and crystal size[J]. Acta Pet Sin (Pet Process Sect), 2001,17(2):24-29.  

    22. [22]

      LI Zhao-fei, GUO Cheng-yu, WANG Qian, LIU Qi-wu, XING Xin, HU Yun-feng. Synthesis of ZSM-5 zeolites with different silica-alumina ratio and their application in catalytic cracking of 1-butene[J]. Petrochem Technol, 2016,45(2):163-168.  

    23. [23]

      SONG W, JUSTICE R E, JONES C A, GRASSIAN V H, LARSEN S C. Synthesis, characterization, and adsorption properties of nanocrystalline ZSM-5[J]. Langmuir, 2004,20(19):8301-8306. doi: 10.1021/la049516c

    24. [24]

      CHU C T W, CHANG C D. Isomorphous substitution in zeolite frameworks. 1. Acidity of surface hydroxyls in[B]-, [Fe]-, [Ga]-, and[Al]-ZSM-5[J]. J Phys Chem, 1985,89(9):1569-1571. doi: 10.1021/j100255a005

    25. [25]

      LALIK E, LIU X S, KLINOWSKI J. The role of gallium in the catalytic activity zeolite[Si, Ga]-ZSM-5 for methanol conversion[J]. J Phys Chem, 1992,96(2):805-809. doi: 10.1021/j100181a051

    26. [26]

      HENDRLK K, VU A T, BARBARA P, ROLF F, CHRISTEL P, WERNER S. Disruption of the MFI framework by the incorporation of gallium[J]. J Chem Soc Faraday Trans, 1993,89(7):1131-1138. doi: 10.1039/ft9938901131

    27. [27]

      CHOUDHARY V R, KINAGE A K. Methanol-to-aromatics conversion over H-gallosilicate (MFI):Influence of Si/Ga ratio, degree of H+ exchange, pretreatment conditions, and poisoning of strong acid sites[J]. Zeolites, 1995,15(8):732-738. doi: 10.1016/0144-2449(95)00082-H

    28. [28]

      PRICE G L, KANAZIREV V I, DOOLEY K M. Characterizaiton of[Ga] MFI via thermal analysis[J]. Zeolites, 1995,15(15):725-731.  

    29. [29]

      YUAN S P, WANG J G, LI Y W, PENG S Y. Theoretical studies on the properties of acid site in isomorphously substituted ZSM-5[J]. J Mol Catal A:Chem, 2002,178(1/2):267-274.  

    30. [30]

      MIAO Qing, DONG Mei, NIU Xian-jun, WANG Hao, FAN Wei-bin, WANG Jian-guo, QIN Zhang-feng. Synthesis of gallium-containing ZSM-5 molecular sieves and their catalytic performance in methanol aromatizaiton[J]. J Fuel Chem Technol, 2012,40(10):1230-1239. doi: 10.3969/j.issn.0253-2409.2012.10.012 

    31. [31]

      GAO Jun-hua, LIU Ping, ZHANG Bin, LIU Zeng-hou, HAN Li-hua, ZHANG Kan. Stability of ZSM-5 zeolite catalysts with hierarchical pores form methanol to hydrocarbons[J]. Petrochem Technol, 2017,46(3):276-282.

  • 加载中
    1. [1]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    2. [2]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    5. [5]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    6. [6]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    7. [7]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    8. [8]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    9. [9]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    10. [10]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    13. [13]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    14. [14]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    15. [15]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    16. [16]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    17. [17]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    18. [18]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    19. [19]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    20. [20]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

Metrics
  • PDF Downloads(8)
  • Abstract views(619)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return