NO removal using oxidation of free radicals produced from Fe2+ and heat synergic activation of oxone
- Corresponding author: LIU Yang-xian, liuyx1984@126.com
Citation:
LIU Yong, SHAN Ye, DING Shuai, HAN Xuan, LIU Yang-xian. NO removal using oxidation of free radicals produced from Fe2+ and heat synergic activation of oxone[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(12): 1520-1527.
SU C Y, RAN X, HU J L, SHAO C L. Photocatalytic process of simultaneous desulfurization and denitrification of flue gas by TiO2-polyacrylonitrile nanofibers[J]. Environ Sci Technol, 2013,47(20):11562-11568. doi: 10.1021/es4025595
WEI Z S, NIU H J, JI Y F. Simultaneous removal of SO2 and NOx by microwave with potassium permanganate over zeolite[J]. Fuel Process Technol, 2009,90(2):324-329. doi: 10.1016/j.fuproc.2008.09.005
LIU Y X, ZHNAG J, SHENG C D. Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process[J]. Chem Eng J, 2010,162(3):1006-1011. doi: 10.1016/j.cej.2010.07.009
LIU Y X, ZHNAG J, PAN J F, TANG A K. Investigation on the removal of NO from SO2 containing simulated flue gas by an ultraviolet/fenton-like reaction[J]. Energy Fuels, 2012,26(9):5430-5436. doi: 10.1021/ef3008568
ADEWUYI Y G, KHAN N E. Modeling the ultrasonic cavitation-enhanced removal of nitrogen oxide in a bubble column reactor[J]. AIChE J, 2012,58(8):2397-2411. doi: 10.1002/aic.12751
GUO R T, PAN W G, ZHANG X B, REN J X. Removal of NO by using Fenton reagent solution in a lab-scale bubbling reactor[J]. Fuel, 2011,90(11):3295-3298. doi: 10.1016/j.fuel.2011.06.030
ZHAO Y, WEN X Y, GUO T X, ZHOU J H. Desulfurization and denitrogenation from flue gas using Fenton reagent[J]. Fuel Process Technol, 2014,128(10):54-60.
ZHAO Y, YUAN B, SHEN Y, HAO R, YANG S. Simultaneous removal of NO and SO2 from flue gas using vaporized H2O2 catalyzed by nanoscale zero-valent iron[J]. Environ Sci Pollut R, 2018,25(25):1-12.
LIU Y X, WANG Y. Elemental mercury removal from flue gas using heat and Co2+/Fe2+ coactivated oxone oxidation system[J]. Chem Eng J, 2018,348(15):464-475.
XU W, LIU Y X, WANG Q, ZHANG J, PAN J F. Removal of nitric oxide from flue gas using sulfate/hydroxyl radicals from activation of oxone with cobalt and high temperature[J]. Environ Prog Sustainable Energy, 2017,36(4):1013-1021. doi: 10.1002/ep.v36.4
LIU Y X, WANG Q. Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor[J]. Environ Sci Technol, 2014,48(20):12181-12189. doi: 10.1021/es501966h
ADEWUYI Y G, OWUSU S O. Aqueous absorption and oxidation of nitric oxide with oxone for the treatment of tail gases:Process feasibility, stoichiometry, reaction pathways, and absorption rate[J]. Ind Eng Chem Res, 2003,42(17):4084-4100. doi: 10.1021/ie020709+
WU Y. Impinging Streams:Fundamentals, Properties, and Applications[M]. Amsterdam:Elsevier, 2007.
LIU Y X, WANG Y, YIN Y S, PAN J F, ZHANG J. Oxidation removal of nitric oxide from flue gas using ultraviolet light (UV) and heat coactivated oxone system[J]. Energy Fuels, 2018,32(2):1999-2008. doi: 10.1021/acs.energyfuels.7b03165
LIU Y X, WANG Y, YANG W, PAN Z H, WANG Q. Simultaneous oxidation-absorption of nitric oxide and sulfur dioxide using aqueous ammonium persulfate synergistically activated by UV-light and heat[J]. Chem Eng Res Des, 2018,130(2):321-333.
ADEWUYI Y G, SAKYI N Y. Removal of nitric oxide by aqueous sodium persulfate simultaneously activated by temperature and Fe2+ in a lab-scale bubble reactor[J]. Ind Eng Chem Res, 2013,52(41):14687-14697. doi: 10.1021/ie4025177
ADEWUYI Y G, KHAN M A, SAKYI N Y. Kinetics and modeling of the removal of nitric oxide by aqueous sodium persulfate simultaneously activated by temperature and Fe2+[J]. Ind Eng Chem Res, 2014,53(2):828-839. doi: 10.1021/ie402801b
LIU Y X, WANG Y, WANG Q, PAN J F, ZHANG J. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS)[J]. Chemosphere, 2018,190(1):431-441.
LIU Y X, XU W, PAN J F, WANG Q. Oxidative removal of NO from flue gas using ultrasound, Mn2+/Fe2+ and heat coactivation of oxone in an ultrasonic bubble reactor[J]. Chem Eng J, 2017,326(10):1166-1176.
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
Yuan GAO , Yiming LIU , Chunhui WANG , Zhe HAN , Chaoyue FAN , Jie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362
Chengpeng Liu , Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
Qiuping Liu , Yongxian Fan , Wenxian Chen , Mengdi Wang , Mei Mei , Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083
Pingping LU , Shuguang ZHANG , Peipei ZHANG , Aiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
Jihua Deng , Xinshi Wu , Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
1-4: cylinder gases (N2/O2/SO2/NO); 5-8: rotameters; 9: gas blender; 10: gas valves; 11: thermometer; 12: constant temperature device; 13: impinging stream reactor; 14: accelerating tube; 15: atomizing nozzles; 16: solution; 17: circulating pump; 18: flue gas analyzer; 19: scrubber bottle; 20: nozzles distribution
experimental conditions: Fe2+ concentration, 0.03 mol/L; oxone concentration, 0.35 mol/L; solution temperature, 338 K; solution pH value, 2.09; Liquid-gas ratio, 10.0; O2 concentration, 6.0%; NO concentration, 401 mg/m3; SO2 concentration, 2286 mg/m3
(basic experimental conditions are same as those under Figure 2 title)
(basic experimental conditions are same as those in Figure 2 title)
A: oxone+298 K; B: oxone+338K; C: oxone-298 K+0.03 mol/L Fe2+; D: oxone-338 K+0.03 mol/L Fe2+; E: 338 K+0.03 mol/L Fe2+