Citation: ZHANG Li, MENG Peng-tong, WANG Sen, QIN Zhang-feng, WANG Peng-fei, WANG Guo-fu, LI Jun-fen, DONG Mei, FAN Wei-bin, WANG Jian-guo. Synthesis of RUB-13 zeolite and its catalytic performance in the conversion of methanol to olefins[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(9): 1097-1104. shu

Synthesis of RUB-13 zeolite and its catalytic performance in the conversion of methanol to olefins

  • Corresponding author: QIN Zhang-feng, qzhf@sxicc.ac.cn LI Jun-fen, lijunfen@sxicc.ac.cn WANG Jian-guo, iccjgw@sxicc.ac.cn
  • Received Date: 15 June 2020
    Revised Date: 8 August 2020

    Fund Project: the National Natural Science Foundation of China 21991092the National Natural Science Foundation of China U1910203the Strategic Priority Research Program of Chinese Academy of Sciences XDA21020500Natural Science Foundation of Shanxi Province of China 201901D211581The project was supported by the National Natural Science Foundation of China (21991092, U1910203, U1862101, 21773281, 21802157), the Strategic Priority Research Program of Chinese Academy of Sciences (XDA21020500) and Natural Science Foundation of Shanxi Province of China (201901D211581)the National Natural Science Foundation of China 21802157the National Natural Science Foundation of China 21773281the National Natural Science Foundation of China U1862101

Figures(6)

  • RUB-13 zeolites were synthesized by hydrothermal method. The effect of organic structure-directing agent (OSDA), silica source, crystallization temperature and Si/H2O ratio on the crystal structure was investigated and the catalytic performance of H-RUB-13 in the conversion of methanol to olefins (MTO) was evaluated. The results indicate that with 1, 2, 2, 6, 6-pentamethylpiperidine (PMP) as OSDA and fumed silica as silica source, pure and highly crystalline RUB-13 zeolites with a Si/Al ratio of 100 or 200 can be successfully synthesized by crystallization at 170 ℃, with a H2O/Si ratio of 100 or 80 in the synthesis gel, respectively. The crystals of the synthesized RUB-13 zeolites display a thin rod-like morphology. As a catalyst in MTO, the high-silica H-Al-B-RUB-13 (Si/Al=200) zeolite exhibits unprecedentedly high selectivity to light olefins at 400 ℃ (54.5% to propene and 97.8% to C2-5=), much better than the traditional H-SAPO-34 and H-ZSM-5 zeolites under similar conditions.
  • 加载中
    1. [1]

      CUNDY C S, COX P A. The hydrothermal synthesis of zeolites:History and development from the earliest days to the present time[J]. Chem Rev, 2003,103(3):663-702. doi: 10.1021/cr020060i

    2. [2]

      CORMA A. State of the art and future challenges of zeolites as catalysts[J]. J Catal, 2003,216(1/2):298-312.  

    3. [3]

      MU Xu-hong, WANG Dian-zhong, WANG Yong-rui, LIN Min, CHENG Shi-biao, SHU Xing-tian. Nanosized molecular sieves as petroleum refining and petrochemical catalysts[J]. Chin J Catal, 2013,34(1):69-79.  

    4. [4]

      CHENG Zhi-lin, CHAO Zi-sheng, WAN Hui-lin. Progress in the research of zeolite membrane on gas separation[J]. Prog Chem, 2004,16(1):61-67.  

    5. [5]

      ZHU Q, KONDO J N, OHNUMA R, KUBOTA Y, YAMAGUCHI M, TATSUMI T. The study of methanol-to-olefin over proton type aluminosilicate CHA zeolites[J]. Microporous Mesoporous Mater, 2008,112(1/3):153-161.  

    6. [6]

      ZHU Q, HINODE M, YOKOI T, KONDO J N, KONDO Y, TATSUMI T. Methanol-to-olefin over gallosilicate analogues of chabazite zeolite[J]. Microporous Mesoporous Mater, 2008,116(1/3):253-257.  

    7. [7]

      LIANG J, LI H, ZHAO S, GUO W, WANG R, YING M. Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion[J]. Appl Catal, 1990,64:31-40. doi: 10.1016/S0166-9834(00)81551-1

    8. [8]

      ZHU Q, KONDO J N, TATSUMI T, INAGAKI S, OHNUMA R, KUBOTA Y, SHIMODAIRA Y, DOMEN K. A comparative study of methanol to olefin over CHA and MTF zeolites[J]. J Phys Chem C, 2007,111(14):5409-5415. doi: 10.1021/jp063172c

    9. [9]

      TANG Jun-qin, YE Li-ping, YING Wei-yong, FANG Ding-ye. Performances of SAPO-34 catalysts with different ratios of Si to Al in methanol-to-olefins[J]. Petrochem Technol, 2010,39(1):22-27.  

    10. [10]

      PARK J W, LEE J Y, KIM K S, HONG S B, SEO G. Effects of cage shape and size of 8-membered ring molecular sieves on their deactivation in methanol-to-olefin (MTO) reactions[J]. Appl Catal A:Gen, 2008,339(1):36-44. doi: 10.1016/j.apcata.2008.01.005

    11. [11]

      IVANOVA S, LEBRUN C, VANHAECKE E, PHAM-HUU C, LOUIS B. Influence of the zeolite synthesis route on its catalytic properties in the methanol to olefin reaction[J]. J Catal, 2009,265(1):1-7.  

    12. [12]

      BLEKEN F L, CHAVAN S, OLSBYE U, BOLTZ M, OCAMPO F, LOUIS B. Conversion of methanol into light olefins over ZSM-5 zeolite:Strategy to enhance propene selectivity[J]. Appl Catal A:Gen, 2012,447:178-185.  

    13. [13]

      YOKOI T, YOSHIOKA M, IMAI H, TATSUMI T. Diversification of RTH-type zeolite and its catalytic application[J]. Angew Chem Int Ed, 2009,48(52):9884-9887. doi: 10.1002/anie.200905214

    14. [14]

      YOSHIOKA M, YOKOI T, LIU M, IMAI H, INAGAKI S, TATSUMI T. Preparation of RTH-type zeolites with the amount and/or kind of organic structure-directing agents (OSDA):Are OSDAs indispensable for the crystallization?[J]. Microporous Mesoporous Mater, 2012,153:70-78. doi: 10.1016/j.micromeso.2011.12.024

    15. [15]

      LIU M, YOKOI T, YOSHIOKA M, IMAI H, KONDO J N, TATSUMI T. Differences in Al distribution and acidic properties between RTH-type zeolites synthesized with OSDAs and without OSDAs[J]. Phys Chem Chem Phys, 2014,16(9):4155-4164. doi: 10.1039/c3cp54297a

    16. [16]

      ZHANG L, WANG S, SHI D, QIN Z, WANG P, WANG G, LI J, DONG M, FAN W, WANG J. Methanol to olefins over H-RUB-13 zeolite:Regulation of framework aluminum siting and acid density and their relationship to the catalytic performance[J]. Catal Sci Technol, 2020,10(6):1835-1847. doi: 10.1039/C9CY02419K

    17. [17]

      JIA Yan-ping, MA Jiao, ZHANG Lan-he, DONG Chang-qing, WANG Xiao-qiang. Application progress on porous silica material[J]. Bull. Chin Ceram Soc, 2014,33(12):3206-3212.  

    18. [18]

      LANDRY C C, TOLBERT S H, GALLIS K W, MONNIER A, STUCKY G D, NORBY P, HANSON J C. Phase transformations in mesostructured silica/surfactant composites. Mechanisms for change and applications to materials synthesis[J]. Chem Mater, 2001,13(5):1600-1608. doi: 10.1021/cm000373z

    19. [19]

      VORTMANN S, MARLER B, GIES H, DANIELS P. Synthesis and crystal structure of the new borosilicate zeolite RUB-13[J]. Microporous Mesoporous Mater, 1995,4(2/3):111-121.  

  • 加载中
    1. [1]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    9. [9]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    10. [10]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    11. [11]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    12. [12]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    13. [13]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    14. [14]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    15. [15]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    16. [16]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    17. [17]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(3)
  • Abstract views(1640)
  • HTML views(207)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return