Citation: XIA Min, ZHAO Ran, GONG Xiao-li, QIN Jun-qi, WANG Han-mei, XIA Dong-sheng, WANG Dong. Mechanism for NOx removal over the bamboo charcoal supported BiOI/BiOCl composite photocatalyst with oxygen vacancy[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(12): 1522-1528. shu

Mechanism for NOx removal over the bamboo charcoal supported BiOI/BiOCl composite photocatalyst with oxygen vacancy

  • Corresponding author: ZHAO Ran, ranzhao.hust@gmail.com
  • Received Date: 4 July 2017
    Revised Date: 24 October 2017

    Fund Project: the Scientific Research Plan Project of Education Department of Hubei Q20151605Open Source Project of Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing STRZ2017005The project was supported by the Scientific Research Plan Project of Education Department of Hubei (Q20151605), Open Source Project of Hubei Key Laboratory of Advanced Textile Materials & Application (Fzxcl2017004), Open Source Project of Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing (STRZ2017005)Open Source Project of Hubei Key Laboratory of Advanced Textile Materials & Application Fzxcl2017004

Figures(8)

  • BiOI/BiOCl composite photocatalysts with oxygen vacancy (OV) were successfully synthesized by solvothermal method with bamboo charcoal (BC) as the carrier. The effect of temperature and light on the catalytic performance in the removal of NOx was considered and the photocatalytic reaction mechanism was investigated with the assistance of SEM, XPS, XRD, PL and Uv-vis analysis. The results indicated that optimum denitrification efficiency of 73% can be achieved under 30℃ and with a xenon lamp of 500 W. After the modification with the OV agents, the specific surface area and pore capacity of BC were greatly enhanced; the adsorption capacity was also improved and the functional groups of C=O and -COO can be efficiently broken into C-O functional groups. Meanwhile, the modification with OV agents can increase the photocatalytically active sites, reduce the recombination rate of electron hole pairs, and thus improve the efficiency of NO photocatalytic degradation.
  • 加载中
    1. [1]

      LERDAU M T, MUNGER J W, JACOB D J. The NO2 flux conundrum[J]. Science, 2000,289(5488):2291-2293. doi: 10.1126/science.289.5488.2291

    2. [2]

      RODRIGUEZ J A, JIRSAK T, LIU G, HRBEK J, DVORAK J, MAITI A. Chemistry of NO2 on oxide surfaces: Ormation of NO3 on TiO2(110) and NO2 O vacancy interactions[J]. J Am Chem Soc, 2001,123(39)9597. doi: 10.1021/ja011131i

    3. [3]

      KIM C H, QI G, DAHLBERG K, LI W. Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust[J]. Science, 2010,327(5973):1624-1627. doi: 10.1126/science.1184087

    4. [4]

      MA L, LI J, KE R, FU L. Catalytic performance, characterization, and mechanism study of Fe2 (SO4)3/TiO2 catalyst for selective catalytic reduction of NOx by ammonia[J]. J Phys Chem C, 2011,115(15):7603-7612. doi: 10.1021/jp200488p

    5. [5]

      AI Z, HO W, LEE S, ZHANG L. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environ Sci Technol, 2009,43(11):4143-4150. doi: 10.1021/es9004366

    6. [6]

      DONG F, SUN Y, FU M, WU Z, LEE S C. Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers[J]. J Hazard Mater, 2012,219:26-34.  

    7. [7]

      WU T, LI X, ZHANG D, DONG F, CHEN S. Efficient visible light photocatalytic oxidation of NO with hierarchical nanostructured 3D flower-like BiOClxBr1-x solid solutions[J]. J Alloys Compd, 2016,671:318-327. doi: 10.1016/j.jallcom.2016.01.267

    8. [8]

      SHAMAILA S, SAJJAD A K L, CHEN F, ZHANG J. WO3/BiOCl, a novel heterojunction as visible light photocatalyst[J]. J Colloid Interface Sci, 2011,356(2):465-472. doi: 10.1016/j.jcis.2011.01.015

    9. [9]

      CHANG X, YU G, HUANG J, LI Z, ZHU S, YU P, JI G. Enhancement of photocatalytic activity over NaBiO3/BiOCl composite prepared by an in situ formation strategy[J]. Catal Today, 2010,153(3):193-199.  

    10. [10]

      LIU Y, SON W J, LU J, HUANG B, DAI Y, WHANGBO M H. Composition dependence of the photocatalytic activities of BiOCl1-xBrx solid solutions under visible light[J]. Chem-Eur J, 2011,17(34):9342-9349. doi: 10.1002/chem.v17.34

    11. [11]

      WANG W, HUANG F, LIN X, YANG J. Visible-light-responsive photocatalysts xBiOBr-(1-x) BiOI[J]. Catal Commun, 2008,9(1):8-12. doi: 10.1016/j.catcom.2007.05.014

    12. [12]

      CHENG H, HUANG B, DAI Y, QIN X, ZHANG X. One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances[J]. Langmuir, 2010,26(9):6618-6624. doi: 10.1021/la903943s

    13. [13]

      ZHANG X, ZHANG L, XIE T, WANG D. Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures[J]. J Phys Chem C, 2009,113(17):7371-7378. doi: 10.1021/jp900812d

    14. [14]

      LI T B, CHEN G, ZHOU C, SHEN Z Y, JIN R C, SUN J X. New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances[J]. Dalton Trans, 2011,40(25):6751-6758. doi: 10.1039/c1dt10471c

    15. [15]

      REN L, ZHANG D, HAO X, XIAO X, JIANG Y, GONG J, TONG Z. Facile synthesis of flower-like Pd/BiOCl/BiOI composites and photocatalytic properties[J]. Mater Res Bull, 2017.  

    16. [16]

      JIANG G, WANG X, WEI Z, LI X, XI X, HU R, CHEN W. Photocatalytic properties of hierarchical structures based on Fe-doped BiOBr hollow microspheres[J]. J Mater Chem A, 2013,1(7):2406-2410. doi: 10.1039/c2ta00942k

    17. [17]

      YE L, LIU J, GONG C, TIAN L, PENG T, ZAN L. Two different roles of metallic Ag on Ag/AgX/BiOX (X= Cl, Br) visible light photocatalysts: Surface plasmon resonance and Z-scheme bridge[J]. Acs Catal, 2012,2(8):1677-1683. doi: 10.1021/cs300213m

    18. [18]

      WANG J, WANG Z, HUANG B, MA Y, LIU Y, QIN X, DAI Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO[J]. ACS Appl Mater Interfaces, 2012,4(8):4024-4030. doi: 10.1021/am300835p

    19. [19]

      HUANG Y, LI H, BALOGUN M S, LIU W, TONG Y, LU X, JI H. Oxygen vacancy induced bismuth oxyiodide with remarkably increased visible-light absorption and superior photocatalytic performance[J]. ACS Appl Mater Interfaces, 2014,6(24):22920-22927. doi: 10.1021/am507641k

    20. [20]

      MIAO Miao, LI He-xing. Synthesis and characterization of bismuth based visible light catalysts by unconventional techniques[D]. Shanghai: Shanghai Normal University SHNU, 2011. 

    21. [21]

      CUI Jing, LI Jia-jun, ZHAO Nai-qin, SHI Chun-sheng, DU Xi-wen, HAN Seng. A new method for preparing activated carbon by separating carbon powder with dust[J]. Ion Exch Adsorpt, 2006,22(1):25-32.

    22. [22]

      LIU Y, XU J, WANG L, ZHANG H, XU P, DUAN X, WANG S. Three-dimensional BiOI/BiOX (X= Cl or Br) nanohybrids for enhanced visible-light photocatalytic activity[J]. Nanomaterials-Basel, 2017,7(3)64. doi: 10.3390/nano7030064

    23. [23]

      GUO Y, LI Y, ZHU T, YE M. Effects of concentration and adsorption product on the adsorption of SO2 and NO on activated carbon[J]. Energy Fuels, 2013,27(1):360-366. doi: 10.1021/ef3016975

    24. [24]

      WANG S, GUAN Y, WANG L, ZHAO W, HE H, XIAO J, SUN C. Fabrication of a novel bifunctional material of BiOI/Ag3VO4, with high adsorption-photocatalysis for efficient treatment of dye wastewater[J]. Appl Catal B: Environ, 2015,168/169:448-457. doi: 10.1016/j.apcatb.2014.12.047

    25. [25]

      FAN W, LI H, ZHAO F, XIAO X, HUANG Y, JI H, TONG Y. Boosting the photocatalytic performance of (001) BiOI: Enhancing donor density and separation efficiency of photogenerated electrons and holes[J]. Chem Commun, 2016,52(30):5316-5319. doi: 10.1039/C6CC00903D

    26. [26]

      AN X, JIMMY C Y. Graphene-based photocatalytic composites[J]. RSC Adv, 2011,1(8):1426-1434. doi: 10.1039/c1ra00382h

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    3. [3]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    16. [16]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    17. [17]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    19. [19]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(2)
  • Abstract views(2765)
  • HTML views(679)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return