Chemical bond concentration and energy density of oil shale kerogen
- Corresponding author: WANG Qing, rlx888@126.com
Citation:
WANG Qing, CHENG Feng, PAN Shuo. Chemical bond concentration and energy density of oil shale kerogen[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(10): 1209-1218.
WANG Qing, XU Xiang-cheng, CHI Ming-shu, ZHUANG Hong-xi, CUI Da, BAI Jing-ru. FT-IR study on composition of oil shale kerogen and its pyrolysis oil generation characteristics[J]. J Fuel Chem Technol, 2015,43(10). doi: 10.3969/j.issn.0253-2409.2015.10.017
KUMAR R, BANSAL V, BADHE R M, MADHIRA I S S, SUGUMARAN V, AHMED S, CHRISTOPHER J, PATEL M B, BASU B. Characterization of indian origin oil shale using advanced analytical techniques[J]. Fuel, 2013,113:610-616. doi: 10.1016/j.fuel.2013.05.055
GAI R H, JIN L J, ZHANG J B, WANG J Y, HU H Q. Effect of inherent and additional pyrite on the pyrolysis behavior of oil shale[J]. J Anal Appl Pyrolysis, 2014,115:342-347.
MACIELl G E, BARTUSKA V J, MIKNIS F P. Correlation between oil yields of oil shales and13C nuclear magnetic resonance spectra[J]. Fuel, 1978,57(8):505-506. doi: 10.1016/0016-2361(78)90163-1
MIKNIS F P, CONN P J. A common relation for correlating pyrolysis yields of coals and oil shales[J]. Fuel, 1986,65(2):248-250. doi: 10.1016/0016-2361(86)90014-1
FREUUD H, WALTERS C C, KELEMEN S R, SISKIN M, GORBATY M L, CURRY D J, BENCE A E. Predicting oil and gas compositional yields via chemical structure-chemical yield modeling (CS-CYM):Part 1-Concepts and implementation[J]. Org Geochem, 2007,38(2):288-305. doi: 10.1016/j.orggeochem.2006.09.009
SISKIN M, SCOUTEN C G, ROSE K D, ACZEL T, COLGROVE S G, PABST R E J. Detailed structural characterization of the organic material in rundle ramsay crossing and green river oil shales[J]. Fuel Energy Abstracts, 1996,37(1)10.
RU X, CHENG Z Q, SONG L H, WANG H Y, LI J F. Experimental and computational studies on the average molecular structure of Chinese huadian oil shale kerogen[J]. J Mol Struct, 2012,1030(4):10-18.
GUAN X H, LIU Y, WANG D, WANG Q, CHI M S, LIU S, LIU C G. Three-dimensional structure of a huadian oil shale kerogen model:An experimental and theoretical study[J]. Energy Fuels, 2015,29(7):4122-4136. doi: 10.1021/ef502759q
UNGERER P, COLLELLl J, YIANNOURAKOU M. Molecular modeling of the volumetric and thermodynamic properties of kerogen:Influence of organic type and maturity[J]. Energy Fuels, 2014,29(1):91-105.
GUAN X H, WANG D, WANG Q, CHI M S, LIU C G. Estimation of various chemical bond dissociation enthalpies of large-sized kerogen molecules using DFT methods[J]. Mol Phys, 2016,114(11):1705-1755. doi: 10.1080/00268976.2016.1143983
LIU Z Y. Advancement in coal chemistry:structure and reactivity[J]. Sci Sin Chim, 2014,44(9):1431-1438. doi: 10.1360/N032014-00159
GUO X J, LIU Z Y, LIU Q Y, SHI L. Modeling of kraft lignin pyrolysis based on bond dissociation and fragments coupling[J]. Fuel Process Technol, 2015,135:133-149. doi: 10.1016/j.fuproc.2014.12.009
RU Xin. Study on the experiment and molecular simulation of oil shale pyrolysis[D]. Changchun:Jilin University, 2013.
VANDEGRIFT G F, WINANS R E, SCOTT R G, HORWITZ E P. Quantitative study of the carboxylic acids in Green River oil shale bitumen[J]. Fuel, 1980,59(9):627-633. doi: 10.1016/0016-2361(80)90124-6
IBRAHIMOV R A, BISSADA K K A. Comparative analysis and geological significance of kerogen isolated using open-system (palynological) versus chemically and volumetrically conservative closed-system methods[J]. Org Geochem, 2010,41(8):800-811. doi: 10.1016/j.orggeochem.2010.05.006
WANG Qing, HUANG Zong-yue, CHI Ming-shu, SHI Ju-xin, WANG Zhi-chao, SUI Yi. Chemical structure analysis of oil shale kerogen[J]. CIESC J, 2015,66(5):1861-1866.
YEN T F. Structural aspects of organic components in oil shales[J]. Dev Petrol Sci, 1976,5:129-148. doi: 10.1016/S0376-7361(08)70047-5
LILLEV , HEINMAA I, PEHK T. Molecular model of Estonian kukersite kerogen evaluated by13C MAS NMR spectra[J]. Fuel, 2003,82(7):799-804. doi: 10.1016/S0016-2361(02)00358-7
HUANG Y, HAN X, JIANG X. Characterization of Dachengzi oil shale fast pyrolysis by Curie-point pyrolysis-GC-MS[J]. Oil Shale, 2015,32(2)134. doi: 10.3176/oil.2015.2.04
AL-HARAHSHEH A, AL-OTOOM A Y, SHAWABKEH R A. Sulfur distribution in the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil Shale[J]. Energy, 2005,30(15):2784-2795.
ZHOU B, SHI L, LIU Q Y, LIU Z Y. Examination of structural models and bonding characteristics of coals[J]. Fuel, 2016,184:799-807. doi: 10.1016/j.fuel.2016.07.081
COLLELL J, UNGERER P, GLLIERO G, YIANNOURAKOU M, MONTEL F, PUJOL M. Molecular simulation of bulk organic matter in Type Ⅱ shales in the middle of the oil formation window[J]. Energy Fuels, 2014,28(12):7457-7466. doi: 10.1021/ef5021632
ZHANG Z, JAMILI A. Modeling the Kerogen 3D Molecular Structure[C]//SPE/CSUR Unconventional Resources Conference. Society of Petroleum Engineers, 2015.
BEHAR F, VANDENBROUCKE M. Chemical Modelling of Kerogens[J]. Org Geochem, 1987,11(1):15-24. doi: 10.1016/0146-6380(87)90047-7
QIN Kuang-zong, LAO Yong-xin. Investigation on the constitution and structure of Maoming and Fushun oil shale I:The aliphatic carbon structure of organic matter[J]. J Fuel Chem Technol, 1985,13(8):193-202.
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
Jinkang Jin , Yidian Sheng , Ping Lu , Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
Haolin Zhan , Qiyuan Fang , Jiawei Liu , Xiaoqi Shi , Xinyu Chen , Yuqing Huang , Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045
Haiyang Jin , Yonghai Hui , Yongfei Zhang , Lijun Gao , Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029