Citation: YAN Yong-gui, MAO Zhong-jian, LUO Jin-jing, DU Ru-peng, LIN Jia-xuan. Simultaneous removal of SO2, NOx and Hg0 by O3 oxidation integrated with bio-charcoal adsorption[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(12): 1452-1460. shu

Simultaneous removal of SO2, NOx and Hg0 by O3 oxidation integrated with bio-charcoal adsorption

  • Corresponding author: LUO Jin-jing, luojj27@xmu.edu.cn
  • Received Date: 30 September 2020
    Revised Date: 29 October 2020

    Fund Project: the Science and Technology Planning Project of Xiamen 3502z20173014The project was supported by the Science and Technology Planning Project of Xiamen (3502z20173014)

Figures(9)

  • Simultaneous removal of SO2, NOx and Hg0 by using O3 and corn bio-charcoal/coconut shell activated carbon was compared in a fixed bed. The effects of temperature, adsorption time and ratio of O3/NO on the removal efficiency of NO, Hg0 and SO2 by corn/coconut shell charcoal were studied, and the corn/coconut shell charcoal was characterized and analyzed. The results indicated that the oxidation rate of NO and Hg0 increases with the increase of O3/NO ratio, while the oxidation rate of SO2 first increases and then decreases slightly. The increase of temperature inhibits the oxidation of NO but promotes the oxidation of Hg0 and SO2. At 140 ℃ and O3/NO ratio of 1.4, the oxidation rate of NO, Hg0 and SO2 is 99%, 78.6% and 3.5%, respectively. As O3/NO ratio increases from 0.4 to 1.4, the removal efficiency of corn charcoal for NOx increases from 4.6% to 93%, and coconut shell charcoal increases from 4.5% to 79%. Corn/coconut shell charcoal can reduce part of NO2 and increase NO concentration at the outlet. NOx adsorption performance on corn charcoal is relatively better, while those of Hg0 and SO2 on coconut charcoal are relatively stronger. Coconut shell charcoal has stronger physical adsorption capacity than corn charcoal. The relative content of oxygen-containing functional groups C-O and C=O on the surface of corn charcoal is higher than that of coconut shell charcoal, while its relative content of COOH and O=C-O is lower.
  • 加载中
    1. [1]

      SARBASSOV Y, DUAN L, JEREMIAS M, MANOVIC V, EDWARD J. SO3 formation and the effect of fly ash in a bubbling fluidised bed under oxy-fuel combustion conditions[J]. Fuel Process Technol, 2017,167(1):314-21.

    2. [2]

      ZHENG Y, JENSEN A D, WINDELIN C, JENSEN F. Review of technologies for mercury removal from flue gas from cement production processes[J]. Prog Energy Combust Sci, 2012,38(5):599-629.

    3. [3]

      JIN D S, DESHWAL B R, PARK Y S, LEE H K. Simultaneous removal of SO2 and NO by wet scrubbing using aqueous chlorine dioxide solution[J]. J Hazaed Mater, 2006,135(1/3):412-417.

    4. [4]

      ZHOU Guo-min, TANG Jian-cheng, HU Zhen-guang, ZHAO Hai-jun, GONG Jia-you. Application eesearch of SNCR technology in the pulverized-coal fired boiler[J]. Pwr Sy Eng, 2010,26(1):18-21.

    5. [5]

      GU Wei-rong, ZHOU Ming-ji, MA Wei. Technology status and analysis on coal-fired flue gas denitrification[J]. Chem Ind Eng Prog, 2012,31(9):2084-2092.

    6. [6]

      ZHANG Jie-ru, LUO Jin-jing, NIU Qiang. Control technologies and evaluation of mercury in flue gas of waste incineration[J]. Environ Sanitation Eng, 2012,20(5):34-36.

    7. [7]

      ZHANG B, XU P, QIU Y, YU Q, MA J J, WU H, LUO G Q, XU M H, YAO H. Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases[J]. Chem Eng J, 2015,263:1-8.

    8. [8]

      WANG L, ZHAO W R, WU Z B. Simultaneous absorption of NO and SO2 by FeEDTA combined with Na2SO3 solution[J]. Chem Eng J, 2007,132(1/3):227-232.

    9. [9]

      ZHAO Y, XU P Y, FU D, HUANG J J, YU H H. Experimental study on simultaneous desulfurization and denitrification based on highly active absorbent[J]. J Environ Sci, 2006,18(2):281-286.

    10. [10]

      CHIU C H, HSI H C, LIN H P. Multipollutant control of Hg/SO2/NO from coal-combustion flue gases using transition metal oxide-impregnated SCR catalysts[J]. Catal Today, 2015,245:2-9.

    11. [11]

      ZHANG S, ZHAO Y, WANG Z, ZHANG J Y, WANG L L, ZHENG C G. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2[J]. J Environ Sci, 2016,53(3):141-150.

    12. [12]

      ZHANG S B, ZHANG Q Z, ZHAO Y C, YANG J P, XU Y, ZHANG J Y. Enhancement of CeO2 modified commercial SCR catalyst for synergistic mercury removal from coal combustion flue gas[J]. Rsc Adv, 2020,10:25325-25338.

    13. [13]

      WEN Zheng-cheng, WANG Zhi-hua, YANG Wei-juan, ZHOU Jun-hu, CEN Ke-fa. Mechanism investigation on oxidization of Hg0 by ozone in flue gas[J]. J Zhejiang Univ (Eng Sci), 2009,43(9):1625-1631.

    14. [14]

      WANG Zhi-hua, ZHOU Jun-hu, WEN Zheng-cheng, ZHANG Yan-wei, CEN Ke-fa. Mechanism investigation on NO oxidization during NOx and SO2 simultaneous removal process by Ozone[J]. J Zhejiang Univ (Eng Sci), 2007,41(5):765-769.

    15. [15]

      ZHANG Ming-hui, MA Qiang, XU Chao-qun, ZHU Yan-qun, ZHOU Jun-hu. Simultaneous removal of NOx and SO2 from glass furnace flue gas by ozone oxidation and spray tower[J]. J Fuel Chem Technol, 2015,43(1):88-93.

    16. [16]

      ZHANG Rui, ZHANG Jia, GUO Shao-peng, LIU Yong-di, LU Jun. Study on simultaneous removal of NO and SO2 from flue gas by ozone oxidation[J]. Chem World, 2015(3):158-161.

    17. [17]

      WANG Zhi-hua, ZHOU Jun-hu, WEI Lin-sheng, WEN Zheng-cheng, CEN Ke-fa. Experimental research for the simultaneous removal of NOx and SO2 in flue gas by O3[J]. Proc CSEE, 2007,27(11):1-5.

    18. [18]

      NIU Qiang, LUO Jin-jing, ZHENG Jin-sen, WANG Wei, WANG Ke-tao. Experimental research for the simultaneous removal of NO and SO2 in flue gas[J]. Guangdong Chem Ind, 2020,12(47):159-161.

    19. [19]

      LI Bing, ZHANG Li-qiang, JIANG Hai-tao, WANG Zhi-qiang, MA Chun-yuan. Influence of activated carbon pore structure and surface chemical properties on the adsorption and oxidation of NO[J]. J China Coal Soc, 2011,36(11):1906-1910.

    20. [20]

      ZHANG W J, RABIEI S, BAGREEV A, ZHUANG M S, RASOULI F. Study of NO adsorption on activated carbons[J]. Appl Catal B: Environ, 2008,83(1/2):63-71.

    21. [21]

      ZHANG Bo-wen, TANG Xiao-long, YI Hong-hong, ZHAO Shun-zheng, ZUO Yan-ran, WANG Zhi-xiang, GAO Feng-yu. Study on NO adsorptive removal on modified activated carbon[J]. New Chem Mater, 2015(7):111-113.

    22. [22]

      ZHANG Peng-yu, YANG Qiao-yun, XU Lv-si, ZENG Han-cai, ZAHNG Liu. Experimental study on adsorption and oxidatiou of activated carbon fiber to NO at low temperature[J]. Electric Power Environ Protect, 2004,20(2):25-28.

    23. [23]

      SOUSA J P S, PEREIRA M F R, FIGUEIREDO J L. Catalytic oxidation of NO to NO2 on N-doped activated carbons[J]. Catal Today, 2011,176(1):383-387.

    24. [24]

      JEGUIRIM M, TSCHAMBER V, BRILHAC J F, EHRBURGER P. Interaction mechanism of NO2 with carbon black: Effect of surface oxygen complexes[J]. J Anal Appl Pyrolysis, 2004,72(1):171-181.

    25. [25]

      LU Jing-jing. Study on removal of elemental mercury from coal-fired flue gas by benzoic acid-modified activated carbon[J]. Fujian: Xiamen University, 2015.

    26. [26]

      LI Bing. Experimental study on the adsorption removal of SO2 from flue gas by powder activated carbon in circulating fluidized bed[J]. Shandong: Shandong University, 2012.

    27. [27]

      GUO Z, XIE Y, HONG I, KIM J. Catalytic oxidation of NO to NO2 on activated carbon[J]. Energ Convers Manage, 2001,42(15):2005-2018.

    28. [28]

      ZHANG P, SUN H W, YU L, SUN T H. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: impact of structural properties of biochars[J]. J Hazard Mater, 2013,244.

    29. [29]

      CHEN B L, JOHNSON E J, BENNY C, ZHU L Z, XING B S. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility[J]. Environ Sci Technol, 2005,39(16):6138-6146.

    30. [30]

      SU Qing-qing, YANG Jia-mo. Mechanism and kinetic characteristics of adsorbing sulfur dioxide by activated carbon on fixed bed[J]. J Chin Three Gorges Univ (Nat Sci), 2010,32(5):97-101.

    31. [31]

      GUO Y, LI Y, ZHU T, YE M. Effects of concentration and adsorption product on the adsorption of SO2 and NO on activated carbon[J]. Energy Fuels, 2013,27(1):360-366.

    32. [32]

      LI Xue-fei. Reduction of NOx from flue gas with modified activated carbon[J]. Beijing: China Coal Research Institute, 2006.

    33. [33]

      JIA F R, LI Z, WANG E G, HE J C, DONG H, LIU G X, JIAN W W. Preparation and SO2 adsorption behavior of coconut shell-based activated carbon via microwave-assisted oxidant activation[J]. China Pet Process Petrochen Technol, 2018,20(1):67-74.

    34. [34]

      HUA Jian, LIU Ning, YI Hua-qiang, WANG Nan-fang. Influence of desulfuration on the surface structure of activated carbon[J]. J Chin Coal Soc, 2007,39(1):98-103.

  • 加载中
    1. [1]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    11. [11]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    12. [12]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    15. [15]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    18. [18]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    19. [19]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    20. [20]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

Metrics
  • PDF Downloads(2)
  • Abstract views(994)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return