Citation: He Jun, Zhang Xinran, Yang Xin. Progress in the Removal of Microcystins by Chemical Oxidation[J]. Chemistry, ;2018, 81(11): 981-985, 991. shu

Progress in the Removal of Microcystins by Chemical Oxidation

  • Corresponding author: Zhang Xinran, zhangxinranhit@163.com
  • Received Date: 20 April 2018
    Accepted Date: 31 August 2018

Figures(2)

  • Microcystins (MCs) are water soluble toxic compounds released from cyanobacteria (blue-green algae). MCs may induce apoptosis and promote tumor formation, posing a significant threat to the ecosystem integrity and human health. Recently, an increasing occurrence of toxic cyanobacterial outbreak results in the need of efficient treatment methods for MCs removal. Chemical oxidation processes provide a promising alternative treatment option because they completely degrade MCs and form less toxic by-products. In this paper, the current research status of conventional and advanced oxidation processes (AOPs) for MCs removal, in terms of the degradation efficiency, reaction kinetics, possible degradation mechanism, identity and toxicity of oxidation by-products, are summarized in brief. The advantages and disadvantages of each method are also compared. In addition, further research challenges and needs are also proposed.
  • 加载中
    1. [1]

      G S Bullerjahn, R M Mckay, T W Davis et al. Harmful Algae, 2016, 54:223~238. 

    2. [2]

      E P Preece, F J Hardy, B C Moore et al. Harmful Algae, 2017, 61:31~45. 

    3. [3]

      V K Sharma, T M Triantis, M G Antoniou et al. Sep. Purif. Technol., 2012, 91:3~17. 

    4. [4]

       

    5. [5]

       

    6. [6]

      X He, Y L Liu, A Conklin et al. Harmful Algae, 2016, 54:174~193. 

    7. [7]

      J A Westrick, D C Szlag, B J Southwell et al. Anal. Bioanal. Chem., 2010, 397(5):1705~1714. 

    8. [8]

      D Pantelić, Z Svirčev, J Simeunović et al. Chemosphere, 2013, 91(4):421~441. 

    9. [9]

      L Chen, J Chen, X Zhang et al. J. Hazard. Mater., 2016, 301:381~399. 

    10. [10]

      A Campos, V Vasconcelos. Int. J. Mol. Sci., 2010, 11(1):268~287. 

    11. [11]

      Z Lun, Y Hai, C Kun. Biomed. Environ. Sci., 2002, 15(2):166~171.

    12. [12]

      B Žegura, B Sedmak, M Filipič. Toxicon, 2003, 41(1):41~48. 

    13. [13]

      J L Acero, E Rodriguez, J Meriluoto. Water Res., 2005, 39(8):1628~1638. 

    14. [14]

      S Merel, B Lebot, M Clément et al. Chemosphere, 2009, 74(6):832~839. 

    15. [15]

      B C Nicholson, J Rositano, M D Burch. Water Res., 1994, 28(6):1297~1303. 

    16. [16]

      A Zamyadi, L Ho, G Newcombe et al. Water Res., 2012, 46(5):1524~1535. 

    17. [17]

      S Merel, M Clément, O Thomas. Toxicon, 2010, 55(4):677~691. 

    18. [18]

      L Ho, G Onstad, U V Gunten et al. Water Res., 2006, 40(6):1200~1209. 

    19. [19]

      Y Zhang, Y Shao, N Gao et al. Chem. Eng. J., 2016, 287:189~195. 

    20. [20]

      S Zhou, Y Shao, N Gao et al. Sci. Total Environ., 2014, 482~483:208-213. 

    21. [21]

      Y Ji, J L Huang, J Fu et al. J. China Univ. Mining Technol., 2008, 18(4):623~628. 

    22. [22]

      U Von Gunten. Water Res., 2003, 37(7):1443~1467. 

    23. [23]

      H F Miao, F Qin, G J Tao et al. Chemosphere, 2010, 79(4):355~361. 

    24. [24]

      E Rodríguez, G D Onstad, T P J Kull et al. Water Res., 2007, 41(15):3381~3393. 

    25. [25]

      G D Onstad, S Strauch, J Meriluoto et al. Environ. Sci. Technol., 2007, 41(12):4397~4404. 

    26. [26]

      E Rodríguez, M E Majado, J Meriluoto et al. Water Res., 2007, 41(1):102~110. 

    27. [27]

      E Rodríguez, J L Acero, L Spoof et al. Water Res., 2008, 42(6):1744~1752. 

    28. [28]

      B L Yuan, J H Qu, M L Fu. Toxicon, 2002, 40(8):1129~1134. 

    29. [29]

       

    30. [30]

      P J Senogles, J A Scott, G Shaw et al. Water Res., 2001, 35(5):1245~1255. 

    31. [31]

      K Tsuji, T Watanuki, F Kondo et al. Toxicon, 1995, 33(12):1619~1631. 

    32. [32]

       

    33. [33]

      R P Qiao, N Li, X H Qi et al. Toxicon, 2005, 45(6):745~752. 

    34. [34]

      G S Shephard, M S Stockenstr, D D Villiers et al. Water Res., 2002, 36(1):140~146. 

    35. [35]

      M G Antoniou, J A Shoemaker, A Armah et al. Toxicon, 2008, 51(6):1103~1118. 

    36. [36]

       

    37. [37]

      Y Zhong, X Jin, R Qiao et al. J. Hazard. Mater., 2009, 167(1/3):1114~1118.

    38. [38]

      E R Bandala, D Martľnez, E Martľnez et al. Toxicon, 2004, 43(7):829~832. 

    39. [39]

      T P J Kull, O T Sjövall, M K Tammenkoski et al. Environ. Sci. Technol., 2006, 40(5):1504~1510. 

    40. [40]

      F Al Momani, D W Smith, M G El-Din. J. Hazard. Mater., 2008, 150(2):238~249. 

    41. [41]

      M G Antoniou, A A De La Cruz, D D Dionysiou. Environ. Sci. Technol., 2010, 44(19):7238~7244. 

    42. [42]

      X Zhang, J Li, J Y Yang et al. Environ. Sci. Technol., 2016, 50(14):7671~7678. 

    43. [43]

      S Cheng, X Zhang, X Yang et al. Environ. Sci. Technol., 2018, 52(4):1806~1816. 

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    3. [3]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    4. [4]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    8. [8]

      Minglei SunZhong-Yong Yuan . Valorization strategies for electrodegradation of nitrogenous wastes in sewage. Acta Physico-Chimica Sinica, 2025, 41(9): 100108-0. doi: 10.1016/j.actphy.2025.100108

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    13. [13]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    14. [14]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    15. [15]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    18. [18]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    19. [19]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    20. [20]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

Metrics
  • PDF Downloads(6)
  • Abstract views(770)
  • HTML views(288)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return