Citation: LIU Yang, ZHU Shan-hui, LI Jun-fen, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Catalytic performance of bimetallic PtCo supported on nanosheets MoS2 in aqueous-phase reforming of methanol to hydrogen[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(7): 799-805. shu

Catalytic performance of bimetallic PtCo supported on nanosheets MoS2 in aqueous-phase reforming of methanol to hydrogen

  • Corresponding author: ZHU Shan-hui, zhushanhui@sxicc.ac.cn
  • Received Date: 1 April 2019
    Revised Date: 24 April 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21878321)the National Natural Science Foundation of China 21878321

Figures(6)

  • Nanosheets MoS2 with only 6 layers have been successfully synthesized by hydrothermal method and used as support to prepare a series of Pt and PtM (M=Ru, Pd, Co and Ni) bimetallic catalysts for low temperature aqueous-phase reforming of methanol (APRM) to produce hydrogen. Among those catalysts, PtCo supported on MoS2 nanosheets catalyst exhibited the best performance, and its turnover frequency (TOF) of H2 formation reached 37142 h-1 at 220℃. The N2 adsorption-desorption, TEM, H2-TPR and XPS results showed that PtCo/MoS2 performed the highest reduction degree, and the strong electronic interaction between Pt and MoS2 enhanced the adsorption and activation of methanol on the electron-deficient Pt, thus promoted the methanol reforming.
  • 加载中
    1. [1]

      DRESSELHAUS M S, THOMAS I L. Alternative energy technologies[J]. Nature, 2001,414:332-337. doi: 10.1038/35104599

    2. [2]

      VAN DEN BERG A W C, AREAN C O. Materials for hydrogen storage:Current research trends and perspectives[J]. Chem Commun, 2008,6:668-681.

    3. [3]

      STEELE B H, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001,414:345-352. doi: 10.1038/35104620

    4. [4]

      SCHLAPBACH L, ZUTTEL A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001,414:353-358. doi: 10.1038/35104634

    5. [5]

      AMPHLETT J C, CREBER K A M, DAVIS J M, MANN R F, PEPPLEY B A, STOKES D M. Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells[J]. Int J Hydrogen Energy, 1994,19(2):131-137. doi: 10.1016/0360-3199(94)90117-1

    6. [6]

      DAVID W I F, MAKEPEACE J W, CALLEAR S K, HUNTER H M A, TAYLOR J D, WOOD T J, JONES M O. Hydrogen production from ammonia using sodium amide[J]. J Am Chem Soc, 2014,136:13082-13085. doi: 10.1021/ja5042836

    7. [7]

      YU K M K, TONG W, WEST A, CHEUNG K, LI T, SMITH G, GUO Y, TASNG S C. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature[J]. Nat Commun, 2012,31230. doi: 10.1038/ncomms2242

    8. [8]

      SONG C. Fuel processing for low-temperature and high-temperature fuel cells:challenges and opportunities for sustainable development in the 21st century[J]. Catal Today, 2002,77(1/2):17-49.

    9. [9]

      DENG Z, FERREIRA J M F, SAKKA Y. Hydrogen-generation materials for portable applications[J]. J Am Chem Soc, 2008,91(12):3825-3834.

    10. [10]

      CORTRIGHT R D, DAVADA R R, DUMESIC J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water[J]. Nature, 2002,418:964-967. doi: 10.1038/nature01009

    11. [11]

      ZHANG Lei, PAN Li-wei, NI Chang-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie, JIANG Kai. Optimization of methanol steam reforming for hydrogen production[J]. J Fuel Chem Technol, 2013,41(1):116-122. doi: 10.3969/j.issn.0253-2409.2013.01.019 

    12. [12]

      LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of support calcination atmospheres on the activity of CuO/CeO2 catalysts for methanol steam reforming[J]. J Fuel Chem Technol, 2018,46(8):992-999. doi: 10.3969/j.issn.0253-2409.2018.08.011 

    13. [13]

      YANG Shu-qian, LIU Yu-juan, LIU Jin-bo, FANG Ming-ming, XIAO Guo-peng, ZHANG Lei, CHEN Lin, YUAN Xing-zhou, ZHANG Jian. Effect of calcination temperature on the catalytic performance of the hydrotalcite derived Ce/Cu/Zn-Al catalysts for hydrogen production via methanol steam reforming[J]. J Fuel Chem Technol, 2018,46(12):1482-1490. doi: 10.3969/j.issn.0253-2409.2018.12.009 

    14. [14]

      LIU Y, HAYAKAWA T, TSUNODA T, SUZUKI K, HAMAKAWA S, MURATA K, SHIOZAKI R, ISHⅡ T, KUMAGAI M. Steam reforming of methanol over Cu=CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts[J]. Top Catal, 2003,22(3/4):205-213. doi: 10.1023/A:1023519802373

    15. [15]

      BREEN J P, ROSS J R H. Methanol reforming for fuel-cell applications:Development of zirconia-containing Cu-Zn-Al catalysts[J]. Catal Today, 1999,51(3/4):521-533.

    16. [16]

      YFANTIA V L, VASILIADOU E S, LEMONIDOU A A. Glycerol hydro-deoxygenation aided by in situ H2 generation via methanol aqueous phase reforming over a Cu-ZnO-Al2O3 catalyst[J]. Catal Sci Technol, 2016,6:5415-5426. doi: 10.1039/C6CY00132G

    17. [17]

      LIN L, ZHOU W, GAO R, YAO S, ZHANG X, XU W, ZHENG S, JIANG Z, YU Q, LI Y, SHI C, WEN X, MA D. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017,544:80-83. doi: 10.1038/nature21672

    18. [18]

      PALO D R, DAGLE R A, HOLLADAY J D. Methanol steam reforming for hydrogen production[J]. Chem Rev, 2001,107(10):3992-4021.  

    19. [19]

      NIELSEN M, ALBERICO E, BAUMANN W, DREXLER H, JUNGE H, GLADIALI S, BELLER M. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide[J]. Nature, 2013,495:85-89. doi: 10.1038/nature11891

    20. [20]

      HUANG X, ZENG Z, ZHANG H. Metal dichalcogenide nanosheets:Preparation, properties and applications[J]. Chem Soc Rev, 2013,42(5):1934-1946. doi: 10.1039/c2cs35387c

    21. [21]

      LAURSEN A B, KEGNAES S, DAHL S, CHORKENDORFF T. Molybdenum sulfides-efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution[J]. Energy Environ Sci, 2012,5(2):5577-5591. doi: 10.1039/c2ee02618j

    22. [22]

      MERKI D, HU X. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts[J]. Energy Environ Sci, 2011,4(10):3878-3888. doi: 10.1039/c1ee01970h

    23. [23]

      VRUBEL H, MERKI D, HU X. Hydrogen evolution catalyzed by MoS3 and MoS2 particles[J]. Energy Environ Sci, 2012,5(3):6136-6144.  

    24. [24]

      WANG T, LIU L, ZHU Z, PAPAKONSTANTINOU P, HU J, LIU H, LI M. Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticleson an Au electrode[J]. Energy Environ Sci, 2013,6(2):625-633.

    25. [25]

      LI Y, WANG H, XIE L, LIANG Y, HONG G, DAI H. MoS2 nanoparticles grown on graphene:An advanced catalyst for the hydrogen evolution reaction[J]. J Am Chem Soc, 2011,133:7296-7299. doi: 10.1021/ja201269b

    26. [26]

      CHE Z, CUMMINS D, REINECKE B N, CLARK E, SUNKARA M, JARAMILLO T. Core-shell MoO3-MoS2 nanowires for hydrogen evolution:A functional design for electrocatalytic materials[J]. Nano Lett, 2011,11:4168-4175. doi: 10.1021/nl2020476

    27. [27]

      CHANG K, HAI X, PANG H, ZHANG H, SHI L, LIU G, LIU H, ZHAO G, LI M, YE J. Targeted synthesis of 2H-and 1T-Phase MoS2 monolayers for catalytic hydrogen evolution[J]. Adv Mater, 2016,28:10033-10041. doi: 10.1002/adma.201603765

    28. [28]

      BENCK J D, CHEN Z, KURITZKY L Y, FORMAN A J, JARAMILLO T F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production:Insights into the origin of their catalytic activity[J]. ACS Catal, 2012,2(9):1916-1923. doi: 10.1021/cs300451q

    29. [29]

      LAURSEN A B, VESBORG P C K, CHORKENDORFF I. A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability[J]. Chem Commun, 2013,49(43):4965-4967. doi: 10.1039/c3cc41945b

    30. [30]

      CHANG Y H, LIN C T, CHEN T Y, HSU C, LEE Y, ZHANG W, WEI K, LI L. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams[J]. Adv Mater, 2013,25:756-760. doi: 10.1002/adma.201202920

    31. [31]

      MERKI D, FIERRO S, VRUBEL H, HU X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water[J]. Chem Sci, 2011,2(7):1262-1267. doi: 10.1039/C1SC00117E

    32. [32]

      XIE J, ZHANG H, LI S, WANG R, SUN X, ZHOU M, ZHOU J, KOU X, XIE Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Adv Mater, 2013,25(40):5807-5813. doi: 10.1002/adma.v25.40

    33. [33]

      XIE J, WU C, HU S, DAI J, ZHANG N, FENG J, YANG J, XIE Y. Ambient rutile VO2(R) hollow hierarchitectures with rich grain boundaries from new-state nsutite-type VO2, displaying enhanced hydrogen adsorption behavior[J]. Phys Chem Chem Phys, 2012,14(14):4810-4816. doi: 10.1039/c2cp40409e

  • 加载中
    1. [1]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    2. [2]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    3. [3]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    4. [4]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    5. [5]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    12. [12]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    13. [13]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    16. [16]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    17. [17]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

Metrics
  • PDF Downloads(11)
  • Abstract views(770)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return