Hydrogen production from oxidation of coal slurries assisted by ferric ions
- Corresponding author: SUI Sheng, ssui@sjtu.edu.cn
Citation:
XIANG Kang, SUN Zhi-gang, HE Jian-bo, JIA Jie, SUI Sheng. Hydrogen production from oxidation of coal slurries assisted by ferric ions[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(5): 621-627.
SATHE N, BOTTE G G. Assessment of coal and graphite electrolysis on carbon fiber electrodes[J]. J Power Sources, 2006,161(1):513-523. doi: 10.1016/j.jpowsour.2006.03.075
COUGHLIN R W, FAROOQUE M. Hydrogen production from coal, water and electrons[J]. Nature (London), 1979,279(5711):301-303. doi: 10.1038/279301a0
COUGHLIN R W, FAROOQUE M. Thermodynamic, kinetic, and mass balance aspects of coal-depolarized water electrolysis[J]. Ind Eng Chem Proc Des Dev, 1982,21(4):559-564. doi: 10.1021/i200019a004
COUGHLIN R W, FAROOQUE M. Electrochemical gasification of coal-simultaneous production of hydrogen and carbon dioxide by a single reaction involving coal, water, and electrons[J]. Ind Eng Chem Proc Des Dev, 1980,19(2):211-219. doi: 10.1021/i260074a002
COUGHLIN R W, FAROOQUE M. Consideration of electrodes and electrolytes for electrochemical gasification of coal by anodic oxidation[J]. J Appl Electrochem, 1980,10(6):729-740. doi: 10.1007/BF00611276
ANTHONY K E, LINGE H G. Oxidation of coal slurries in acidified ferric sulfate[J]. J Electrochem Soc, 1983,130(11):2217-2219. doi: 10.1149/1.2119555
DHOOGE P M, STILWELL D E, PARK S M. Electrochemical studies of coal slurry oxidation mechanisms[J]. J Electrochem Soc, 1982,129(8):1719-1724. doi: 10.1149/1.2124257
DHOOGE P M, PARK S M. Electrochemistry of coal slurries Ⅱ. Studies on various experimental parameters affecting oxidation of coal slurries[J]. J Electrochem Soc, 1983, 1983,130(5):1029-1036.
PATIL P, BOTTE G G. 206th Electrochemical Society Meeting[C]. Hawaii: The Electrochemical Society Inc, 2004: 559-565.
HESENOV A, MERYEMOGLU B, LCTEN O. Electrolysis of coal slurries to produce hydrogen gas: Effects of different factors on hydrogen yield[J]. Int J Hydrogen Energy, 2011,36(19):12249-12258. doi: 10.1016/j.ijhydene.2011.06.134
PATIL P, ABREU Y D, BOTTE G G. Electrooxidation of coal slurries on different electrode materials[J]. J Power Sources, 2006,158(1):368-377. doi: 10.1016/j.jpowsour.2005.09.033
FAROOQUE M, COUGHLIN R W. Electrochemical gasification of coal (investigation of operating conditions and variables)[J]. Fuel, 1979,58(10):705-712. doi: 10.1016/0016-2361(79)90066-8
DEMOZ A, KHULBE C, FAIRBRIDGE C, PETROVIC S. Iodide mediated electrolysis of acidic coke/coal suspension[J]. J Appl Electrochem, 2008,38(6):845-851. doi: 10.1007/s10800-008-9522-6
SEEHRA M S, RANGANATHAN S, MANIVANNAN A. Carbon-assisted water electrolysis: An energy-efficient process to produce pure hydrogen at room temperature[J]. Appl Phys Lett, 2007(90):044-104.
LIU Huan, WANG Zhi-zhong. Study on Volt-ampere characteristics of coal oxidation[J]. J Fuel Chem Technol, 2002,30(2):182-185.
JIN X, BOTTE G G. Understanding the kinetics of coal electrolysis at intermediate temperatures[J]. J Power Sources, 2010,195(15):4935-4942. doi: 10.1016/j.jpowsour.2010.02.007
JIN X, BOTTE G G. Feasibility of hydrogen production from coal electrolysis at intermediate temperatures[J]. J Power Sources, 2007,171(2):826-834. doi: 10.1016/j.jpowsour.2007.06.209
JIA Jie, SUI Sheng, ZHU Xin-jian, HUANG Bo. Effect of kinetic factors on hydrogen production by coal slurry electrolysis[J]. J Fuel Chem Technol, 2013,2(2):139-143.
THOMAS G, CHETTIAR M, BIRSS V I. Electrochemical oxidation of acidic Alberta coal slurries[J]. J Appl Electrochem, 1990,20(6):941-950. doi: 10.1007/BF01019569
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Yuan ZHU , Xiaoda ZHANG , Shasha WANG , Peng WEI , Tao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232
1: hot plate; 2: asbestosed wire gauze; 3: magnetic stirrer; 4: round-bottom flask; 5: N2inlet; 6: cooling water inlet; 7: condenser pipe; 8: cooling water outlet; 9: thermometer; 10: saturated Ca (OH)2 solution; 11: gas outlet
1: anode; 2: cathode; 3: gas outlet; 4: proton exchange membrane; 5: magnetic stirrer
(a): fresh coal sample (0 cycle); (b): middle coal sample (the 5th cycle); (c): final coal sample (the 9th cycle)
a: fresh coal sample (0 cycle); b: final coal sample (the 9th cycle)
a: fresh coal sample (0 cycle); b: middle coal sample (the 5th cycle); c: final coal sample (the 9th cycle)