Two Ni(Ⅱ) Complexes of Schiff Base Ligands Containing Benzimidazole Ring: Syntheses, Crystal Structures and Antibacterial Properties

Hai-Yan ZHAO Xiao-Dong YANG Na LI

Citation:  ZHAO Hai-Yan, YANG Xiao-Dong, LI Na. Two Ni(Ⅱ) Complexes of Schiff Base Ligands Containing Benzimidazole Ring: Syntheses, Crystal Structures and Antibacterial Properties[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(4): 685-691. doi: 10.11862/CJIC.2017.064 shu

两个基于苯并咪唑席夫碱的镍(Ⅱ) 配合物的合成、晶体结构和抑菌活性

    通讯作者: 赵海燕, hbhaiyanzh@163.com
  • 基金项目:

    2015年河北科技大学五大平台开放基金课题 50

摘要: 在甲醇体系中, 分别将苯并咪唑席夫碱HL1和HL2与高氯酸镍进行配位反应得到2个结构类似的镍配合物[Ni (L1)2]·2H2O (1) 和[Ni (L2)2]·2H2O (2)(HL1=N-(benzimidazol-2-ylethyl)-5-chlorosalicylideneimine, HL2=N-(Benzimidazol-2-ylethyl)-5-bromosalicyli-denei-mine), 并用元素分析、红外光谱、紫外-可见光谱和单晶X射线衍射对其结构进行了表征.结构分析表明:两个配合物均属于单斜晶系, C2/c空间群, Ni(Ⅱ) 与来自2个席夫碱配体的4个氮原子和2个氧原子配位, 形成八面体结构.配合物中的氢键将配合物1和配合物2分别连接成二维和三维网络结构.选取金黄色葡萄球菌和大肠杆菌作为菌种, 研究了2个席夫碱配体和2个配合物的抑菌能力.

English

  • 

    0   Introduction

    For decades, Schiff bases and their transition metal complexes have attracted a lot of attention due to their wide biological applications[1-5]. It is obvious that in Schiff bases the azomethine linkage (C=N) is an important structural requirement for biological activity[6]. Metal complexes containing salicylidene Schiff bases have been of great interest due to their diverse roles in magnetic, luminescence[7-8] and phar-macological properties[9]. It was also reported that sali-cylidene Schiff base with halogen atoms in the sali-cylaldehyde moiety had greater biological activities, like antibacterial and antifungal activities[1, 10-11]. Ben-zimidazole and their derivatives have received consi-derable attention in recent years due to their wide variety of biological activities including antimicroa-bial[12], antifungal[13], antitumor[14], antiviral[15] etc. However, literature survey shows that study on metal complexes of benzimidazole-derived salicylidene Schiff bases is not rich. Until now, a limited number of Cu(Ⅱ), Ni(Ⅱ) and Ⅴ(Ⅳ, Ⅴ) complexes with the above type of Schiff base derivatives have been reported[16-24]. On the other hand, much attention has been paid to nickel complexes of Schiff base derivatives because such complexes have various applications, such as, as antibacterial agents, as fungicide agents, in the treat-ment of cancer and for other biological activities[25-27].

    Herein, we report the syntheses, spectral characterizations and crystal structures of two Ni(Ⅱ) complexes by using two benzimidazole-derived Schiff base ligands HL1 and HL2 (Scheme 1). Moreover, antibacterial activities of the two ligands and two complexes were also investigated against S. aureus (Gram-positive) and E. coli (Gram-negative) bacteria.

    Figure Scheme 1.  Structures of Schiff base ligands HL1 and HL2

    1   Experimental

    1.1   Material and physical measurement

    2-Aminoethyl-1H-benzimidazole dihydrochloride was prepared by the method reported by Ceson et al.[28]. All of the other reagents were used as received. Microanalyses (C, H, N) were carried out using a Perkin-Elmer 240C analyzer. The infrared spectra in KBr pellets were obtained on a ThermoFisher Nicolet 6700 spectrometer in the 4 000~400 cm-1 region. Electronic spectra were carried out in methanol solvent on a Shimadzu UV-2550 spectrophotometer. 1H NMR spectra were taken in CDCl3 on a Bruker Avance 500MHz spectrometer at room temperature with tetramethylsilane as the internal standard.

    1.2   Syntheses of the ligands

    1.3   Syntheses of the complexes

    1.4   X-ray crystallography

    For the structure determination, suitable single crystals with dimensions of 0.30 mm×0.25 mm×0.17 mm (1) and 0.21 mm×0.19 mm×0.15 mm (2), respe-ctively, were mounted on a Bruker Smart 1000 CCD diffractometer, fine focus sealed tube equipped with graphite-monochromatized Mo radiation (λ=0.071 073 nm) at 293(2) K. Semi-empirical absorption corrections were applied using SADABS program[29]. All the structures were solved by direct method, followed by full-matrix least-squares refinements on F2 with anisotropic displacement parameters for all non-hydrogen atoms using the programs SHELXS-97 and SHELXL-97[30]. All the hydrogen atoms were placed in their calculated positions and refined riding with their carrier atoms. The relevant crystal data and structure refinement for 1 and 2 are collected in Table 1. Selected bond lengths and bond angles are presented in Table 2.

    Table 1.  Crystallographic data and refinement summary for the 1 and 2
    Table 1.  Crystallographic data and refinement summary for the 1 and 2
    Table 2.  Selected bond lengths (nm) and bond angles (°) for 1 and 2
    1
    Ni1-N1 0.208 6(3) Ni1-N1 0.208 6(3) Ni1-N2 0.208 2(3)
    Ni1-N2 0.208 2(3) Ni1-O1 0.203 6(2) Ni1-O1 0.203 6(2)
    O1-Ni1-O1 94.36(13) N2-Ni1-N1 88.61(10) O1-Ni1-N2 174.77(10)
    N2-Ni1-N1 97.13(10) O1-Ni1-N2 87.75(10) O1-Ni1-N1 87.77(10)
    O1-Ni1-N2 87.75(10) O1-Ni1-N1 86.69(10) O1-Ni1-N2 174.77(10)
    N2-Ni1-N1 97.13(10) N2-Ni1-N2 90.55(15) N2-Ni1-N1 88.61(10)
    O1-Ni1-N1 86.69(10) N1-Ni1-N1 171.85(15) O1-Ni1-N1 87.77(10)
    2
    Ni1-N1 0.208 0(4) Ni1-N1 0.208 0(4) Ni1-N2 0.208 9(4)
    Ni1-N2 0.208 9(4) Ni1-O1 0.203 7(3) Ni1-O1 0.203 7(3)
    O1-Ni1-O1 94.79(18) N1-Ni1-N2 88.88(14) O1-Ni1-N1 86.57(13)
    N1-Ni1-N2 97.56(10) O1-Ni1-N1 87.23(13) O1-Ni1-N2 87.43(13)
    O1-Ni1-N1 87.23(13) O1-Ni1-N2 174.84(14) O1-Ni1-N1 86.57(13)
    N1-Ni1-N2 97.56(14) N1-Ni1-N1 170.8(2) N1-Ni1-N2 88.88(14)
    O1-Ni1-N2 174.84(14) N2-Ni1-N2 90.7(2) O1-Ni1-N2 87.43(13)
    Symmetry transformations used to generate equivalent atoms: -x+1, y, -z+3/2 for 1; -x+1, y, -z+1/2 for 2
    Table 2.  Selected bond lengths (nm) and bond angles (°) for 1 and 2

    CCDC: 1401182, 1; 1401183, 2.

    1.5   Antibacterial activity test

    The in vitro antimicrobial activity of Schiff base HL1 and HL2 and their respectively complexes 1~2 were studied against Staphylococcus aureus (as Gram positive bacteria) and Escherichia coli (as Gram negative bacteria) by the standard disc diffusion method[31]. The same procedure[32] was followed for the determination of zone inhibition of all the compounds against standard controls.

    1.2.2   Synthesis of N-(Benzimidazol-2-ylethyl)-5-bromosalicylideneimine (HL2)

    The preparation of HL2 followed the same proce-dure described for HL1 except that 5-bromosalicylald-ehyde was used instead of 5-chrolosalicylaldehyde.The ligand precipitated as a yellow solid. Yield: 90%. m.p. 191~193 ℃. IR (KBr pellet, cm-1): 2 840, 1 637, 1 415, 1 273, 752. 1H NMR (500 MHz, CDCl3, ): δ 3.29~3.34 (t, 2H, -CH2-), 4.12~4.17(t, 2H, -CH2-), 6.82~7.71(m, 7H, Ar-H), 8.29(s, 1H, -CH=N-), 13.22(b, 1H, OH). UV-Vis (methanol, λmax / nm): 274, 281, 330. Anal. Calcd. for C16H14BrN3O (%): C, 55.83; H, 4.10; N, 12.21; S, 18.7. Found (%): C, 55.60; H, 4.21; N, 12.34.

    1.2.1   Synthesis of N-(benzimidazol-2-ylethyl)-5-chlorosalicylideneimine (HL1)

    HL1 was synthesized by a condensation reaction between 2-aminoethyl-1H-benzimidazole dihydrochlo-ride (1.335 g, 5 mmol), previously neutralized with K2CO3 (0.83 g, 6 mmol), and 5-chlorosalicylaldehyde (0.605 g, 5 mmol) in 25 mL of methanol. The mixture was stirred at room temperature for two hours and then a yellow precipitate was obtained which was filtered off and washed with cold MeOH and then dried in air. Yield: 96%. m.p. 83~85 ℃. IR (KBr pellet, cm-1): 2 839, 1 637, 1 416, 1 274, 750. 1H NMR (500 MHz, CDCl3): δ 3.29~3.32(t, 2H, -CH2-), 4.12~4.15 (t, 2H, -CH2-), 6.86~7.55(m, 7H, Ar-H), 8.28(s, 1H, -CH=N-), 13.12(b, 1H, OH). UV-Vis (methanol, λmax / nm): 274, 281, 328. Anal. Calcd. for C16H14ClN3O (%): C, 64.16; H, 4.71; N, 14.03. Found (%): C, 64.30; H, 4.57; N, 14.12.

    1.3.1   Synthesis of [Ni (L1)2]·2H2O (1)

    Schiff base HL1 (0.060 g, 0.2 mmol) was dissolved in MeOH (10 mL) and 0.028 mL NEt3 was added. A solution Ni (ClO4)2·6H2O, (0.036, 0.1 mmol) in MeOH (10 mL) were then added with stirring at room temperature. The resulting green solution was stirred for two hours. Green yellow crystals suitable for X-ray structural analysis were obtained by slow evaporation of the solvent after several days. Yield: (0.055 g, 80%). IR (KBr pellet, cm-1): 3 656, 2 901, 1 622, 1 526, 1 458, 1 385, 1 325, 750. Anal. Calcd. for C32H30Cl2N6NiO4(%): C, 55.52; H, 4.37; N, 12.14. Found (%): C, 55.64; H, 4.43; N, 12.35.

    1.3.2   Synthesis of [Ni (L2)2]·2H2O (2)

    The preparation of complex 2 follows the same procedure as that of 1, except that HL2 (0.079 g, 0.2 mmol) was used. Yield: (0.065 g, 84%). IR (KBr pellet, cm-1): 3 649, 2 903, 1 620, 1 523, 1 458, 1 382, 1 327, 748. Anal. Calcd. for C32H30Br2N6NiO4(%): C, 49.20; H, 3.87; N, 10.76. Found (%): C, 49.31; H, 3.63; N, 10.51.

    2   Results and discussion

    2.1   Syntheses and characterization

    The ligands HL1 and HL2 were prepared by the direct condensation reaction of 2-aminoethyl-1H-benzimidazole dihydrochloride, previously neutralized with K2CO3, with 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde (molar ratio 1:1) in methanol, respectively. The metal complexes 1~2 were obtained by the reaction of corresponding ligands with Ni (ClO4)2 ·6H2O in a ratio of 2:1 (nligand / nNi) in methanol medium. The two complexes are air stable and soluble in EtOH, MeOH, DMSO and DMF.

    Several medium intensity bands spreading between 3 300 and 2 300 cm-1 in the two complexes indicate that the NH groups of the benzimidazole rings are involved in hydrogen bonding with other electronegative atoms[21]. Bands at 3 656 and 3 649 cm-1 are assigned as ν(O-H) stretching vibrations of the hydrate water molecules in 1 and 2, respectively. The IR spectra of the two Schiff bases showed a very sharp and strong C=N stretching vibration around 1 637 cm-1. For the two complexes the same band was observed around 1 622 cm-1, which was shifted towards lower wavelength, suggesting coordination through the azomethine nitrogen atom of the ligands. The electronic spectra of the free Schiff base ligands and the two complexes in methanol were measured at room temperature. UV bands around 275 and 283 nm are observed for the free Schiff bases due to the π-π* transition of the benzimidazole group. In complexes 1 and 2 these bands blue-shift, indicating clear evidence of the ring nitrogen coordination to metal centers[33]. For the free Schiff bases the bands at 326 nm for HL1 and 330 nm for HL2, respectively, are characteristic of the n-π* transition of the azomethine linkage. On complexation, this band shifts to a longer wavelength in 1 and 2 (Δ=50 nm for both two complexes)[34]. In the visible region, the two complexes show a broad absorption band appears at λmax value of 640 nm, suggesting a distorted octahedral arrangement around the metal ions.

    2.2   Crystal structures of the complexes

    X-ray diffraction studies reveal that both complexes 1 and 2 crystallize in monoclinic system with C2/c space group. As shown in Fig. 1, in complexes 1 and 2, each complex molecule consists of a monomeric [Ni (L)2] unit with two solvent water molecules. The hexa-coordinated Ni(Ⅱ) center is bonded to two tridentate Schiff base ligands. Each ligand molecule offers deprotonated phenolic oxygen, imine nitrogen and benzimidazole nitrogen atom as the coordination sites providing a NiN4O2 chromophore. The geometry around Ni(Ⅱ) in 1 and 2 can be best described as a distorted octahedron, where the equatorial plane is constructed by two benzimidazole nitrogen atoms and two phenolic oxygen atoms, and the two axial sites being occupied by two imine nitrogen atoms. The average Ni-N and Ni-O distances are 0.208 4 and 0.203 7 nm, respectively, which are comparable to those reported for the similar Schiff base complexes of Ni(Ⅱ)[35]. The three trans-angles at nickel(Ⅱ) vary from 170.8(2)° to 174.84(14)° while the cis-angles are in the range of 86.57(13)~97.56(10)°, being deviating significantly from 180° and 90°, res-pectively, indicating the coordination geometry in com-plexes 1 and 2 is distorted from a regular octahedron.

    Figure 1.  Molecular structures of 1 (a) and 2 (b) with 30% probability level along with the atom numbering scheme

    In complexes 1 and 2, the water molecules are involved in hydrogen bonds acting as both acceptors and donors leading to the formation of intermolecular interaction network. Acting as an acceptor, the O2 atom of the water molecule is engaged in the N3-H3…O2# hydrogen bonds to the H atom on the benzimidazole N atom. On the other hand, as a donor, the O2 atom is engaged with O1 atom of the phenolic group and the N2 atom of the benzimidazole ring through O2-H…O1# and O2-H…N2# hydrogen bonds, respectively, where # refers to the different L ligand. These hydrogen bonds link the complex 1 and 2 into a 2D structure (Fig. 2a and 2b). Besides, complex 1 was further linked into a 3D structure by the inter-molecular C1-H1B…Cl1 hydrogen bonds between a CH2 group bound to the imino moiety of L1 ligand and an adjacent Cl1 atom (Fig. 3). The bond parameters of hydrogen bonds are listed in Table 3.

    Figure 2.  Formation of 2D network by hydrogen bonding interactions in 1 (a) and 2 (b)
    Figure 3.  Hydrogen bond parameters in 1 and 2
    Table 3.  Hydrogen bond parameters in 1 and 2
    D-H…A d(D-H)/nm d(H…A)/nm d(D…A)/nm ∠DHA/(°)
    1
    N3-H3 …02 0.086 0.185 7 0.270 4 168.11
    02-H2E …N2 0.085 0.248 5 0.322 6 146.28
    02-H2F …01 0.085 0.191 2 0.264 8 144.09
    C1-H1B …C11 0.097 0.292 4 0.379 6 150.00
    2
    N3-H3 …02 0.086 0.185 0 0.269 9 169.07
    02-H2E …01 0.085 0.191 9 0.265 3 143.87
    02-H2F …N2 0.085 0.249 0 0.323 2 146.31
    Symmetry codes: -x+3/2, y-1/2, -z+3/2; -x+1, y, -z+3/2; -x+1, -y+1, -z+1 for 1; x, y-1, z; x+1/2, y+1/2, z; -x+3/2, y+1/2, -z+1/2 for 2
    Table 3.  Hydrogen bond parameters in 1 and 2

    2.3   Antibacterial activity of the compounds

    The antibacterial activity of Schiff base ligands, HL1 and HL2 and their two Ni(Ⅱ) complexes were studied against one Gram-positive (S. aureus) and one Gram-negative (E. coli) bacterial strains and the results were showed in Table 4. The two Schiff base ligands are active against S. aureus and E. coli at different concentrations. HL1 exhibits greater antibacterial activity against E. coli whereas HL2 shows higher zone against S. aureus. The antibacterial activity of Schiff base ligands may be due to the presence of azomethine group as well as the presence of the hydroxyl and benzimidazole rings, all of which may play a significant role in the antibacterial activity[6, 10-12].

    Table 4.  Antibacterial activities of the ligands and the complexes
    Compound Dose/(μg·mL-1) Inh1b1t1on zone diameter/mm
    S. aureus E. coli
    HL1 125 9 13
    250 11 14
    500 12 16
    HL2 125 10 11
    250 12 12
    500 13 12
    Complex 1 125 11 15
    250 13 15
    500 14 20
    Complex 2 125 16 13
    250 16 15
    500 18 16
    DMSO (AR)
    Table 4.  Antibacterial activities of the ligands and the complexes

    The two Ni(Ⅱ) complexes have moderate to strong antibacterial activity against S. aureus and E. coli and exhibit higher activity than the corresponding Schiff bases. It is interesting to note that 1 has stronger activities against E. coli than 2 whereas 2 has stronger activities against S. aureus than 1, which is similar to the corresponding Schiff bases. The result indicates that chlorine and bromine atoms may have a subtle influence on the antibacterial activities.

    1. [1]

      Saghatforoush L A, Chalabian F, Aminkhani A, et al. Eur. J. Med. Chem., 2009, 44(11):4490-4495 doi: 10.1016/j.ejmech.2009.06.015

    2. [2]

      Hranjec M, Starčević K, Pavelić S K, et al. Eur. J. Med. Chem., 2011, 46(6):2274-2279 doi: 10.1016/j.ejmech.2011.03.008

    3. [3]

      Creaven B S, Devereux M, Foltyn A, et al. Polyhedron, 2010, 29(2):813-822 doi: 10.1016/j.poly.2009.11.002

    4. [4]

      张奇龙, 王焕宇, 江峰, 等.无机化学学报, 2016, 32(3):464-468 https://www.researchgate.net/publication/301584071_Syntheses_Crystal_Structures_and_Bacteriostatic_Activities_of_NiII_and_CuII_Complexes_Based_on_Pentaerythrityltetramine_Schiff_BaseZHANG Qi-Long, WANG Huan-Yu, JIANG Feng, et al. Chinese J. Inorg. Chem., 2016, 32(3):464-468 https://www.researchgate.net/publication/301584071_Syntheses_Crystal_Structures_and_Bacteriostatic_Activities_of_NiII_and_CuII_Complexes_Based_on_Pentaerythrityltetramine_Schiff_Base

    5. [5]

      仇晓阳.无机化学学报, 2014, 30(7):1667-1672 doi: 10.1021/acs.macromol.6b01976QIU Xiao-Yang. Chinese J. Inorg. Chem., 2014, 30(7):1667-1672 doi: 10.1021/acs.macromol.6b01976

    6. [6]

      Iqbal A, Siddiqui H L, Ashraf C M, et al. Molecules, 2007, 12(2):245-254 doi: 10.3390/12020245

    7. [7]

      Khatua S, Kang J, Kim K, et al. Eur. J. Inorg. Chem., 2010, 31(11):5018-5026

    8. [8]

      Maxim C, Pasatoiu T D, Kravtsov V C, et al. Inorg. Chim. Acta, 2008, 361(14/15):3903-3911 http://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ025615397

    9. [9]

      Dhahagani K, Kumar S M, Chakkaravarthi G, et al. Spectro-chim. Acta Part A, 2014, 117:87-94 doi: 10.1016/j.saa.2013.07.101

    10. [10]

      Shi L, Ge H M, Tan S H, et al. Eur. J. Med. Chem., 2007, 42(4):558-564 doi: 10.1016/j.ejmech.2006.11.010

    11. [11]

      Creaven B S, Devereux M, Karcz D, et al. J. Inorg. Biochem., 2009, 103(9):1196-1203 doi: 10.1016/j.jinorgbio.2009.05.017

    12. [12]

      Ates-Alagoz Z, Yildiz S, Buyukbingol E. Chemotherapy, 2007, 53(2):110-113 doi: 10.1159/000100011

    13. [13]

      Göker H, Kus C, Boykin D W, et al. Bioorg. Med. Chem., 2002, 10(8):2589-2596 doi: 10.1016/S0968-0896(02)00103-7

    14. [14]

      Hranjec M, Pavlović G, Marjanović M, et al. Eur. J. Med. Chem., 2010, 45(6):2405-2417 doi: 10.1016/j.ejmech.2010.02.022

    15. [15]

      Starčević K, Kralj M, Ester K, et al. Bioorg. Med. Chem., 2007, 15(13):4419-4426 doi: 10.1016/j.bmc.2007.04.032

    16. [16]

      Qiu X H, Tong X L. Acta Crystallogr. Sect. E, 2005, E61:m1470-m1471

    17. [17]

      Qiu X H, Tong X L. Acta Crystallogr. Sect. E, 2005, E61:m2302-m2304

    18. [18]

      Qiu X H, Tong X L. Acta Crystallogr. Sect. E, 2006, E62:m841-m842

    19. [19]

      Qiu X H, Tong X L. Acta Crystallogr. Sect. E, 2006, E62:m977-m979

    20. [20]

      邱晓航, 赵君, 仝小兰.结构化学, 2006, 25(11):1343-1346 http://www.cnki.com.cn/Article/CJFDTotal-JGHX200609013.htmQIU Xiao-Hang, ZHAO Jun, TONG Xiao-Lan. Chin. J. Struct. Chem., 2006, 25(11):1343-1346 http://www.cnki.com.cn/Article/CJFDTotal-JGHX200609013.htm

    21. [21]

      Maurya M R, Kumar A, Ebel M, et al. Inorg. Chem., 2006, 45(13):5924-5937 http://www.ncbi.nlm.nih.gov/pubmed/16841997

    22. [22]

      Maurya M R, Chandrakar A K, Chand S. J. Mol. Catal. A:Chem., 2007, 263(1/2):227-237 http://www.sciencedirect.com/science/article/pii/S138111690700091X

    23. [23]

      赵海燕, 邱晓航, 申泮文.无机化学学报, 2010, 26(12):2221-2226 http://en.cnki.com.cn/Article_en/CJFDTOTAL-WJHX201012017.htmZHAO Hai-Yan, QIU Xiao-Hang, SHEN Pan-Wen. Chinese J. Inorg. Chem., 2010, 26(12):2221-2226 http://en.cnki.com.cn/Article_en/CJFDTOTAL-WJHX201012017.htm

    24. [24]

      Kumar R, Kumar R, Mahiya K, et al. Transition Met. Chem., 2015, 40(2):189-195 doi: 10.1007/s11243-014-9905-y

    25. [25]

      Patil S A, Prabhakara C T, Halasangi B M, et al. Spectrochim. Acta Part A, 2015, 137:641-651 doi: 10.1016/j.saa.2014.08.028

    26. [26]

      Chai L Q, Zhang H S, Huang J J, et al. Spectrochim. Acta Part A, 2015, 137:661-669 doi: 10.1016/j.saa.2014.08.084

    27. [27]

      Chandra S, Gautam S, Rajor H K, et al. Spectrochim. Acta Part A, 2015, 137:749-760 doi: 10.1016/j.saa.2014.08.046

    28. [28]

      Cescon L A, Day A R. J. Org. Chem., 1962, 27(2):581-586 doi: 10.1021/jo01049a056

    29. [29]

      Sheldrick G M. SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany, 1996.

    30. [30]

      Sheldrick G M. SHELXL-97, Program for X-ray Crystal Structure Solution, Göttingen University, Germany, 1997.

    31. [31]

      Drew W L, Barry A L, O'Toole R, et al. Appl. Environ. Microbiol., 1972, 24(2):240-247 http://www.ncbi.nlm.nih.gov/pubmed/5071651

    32. [32]

      Zhao H Y, Ma J J, Han Z G, et al. Synth. React. Inorg. Met.-Org. Chem., 2015, 45(4):621-627 doi: 10.1080/15533174.2013.841229

    33. [33]

      Mohapatra S C, Tehlan S, Hundal M S, et al. Inorg. Chim. Acta, 2008, 361(7):1897-1907 doi: 10.1016/j.ica.2007.10.002

    34. [34]

      Golcu A, Tumer M, Demirelli H, et al. Inorg. Chim. Acta, 2005, 358(6):1785-1797 doi: 10.1016/j.ica.2004.11.026

    35. [35]

      Demir S, Yazclar T K, Tas M. Inorg. Chim. Acta, 2014, 409(Part A):399-406

  • Scheme 1  Structures of Schiff base ligands HL1 and HL2

    Figure 1  Molecular structures of 1 (a) and 2 (b) with 30% probability level along with the atom numbering scheme

    H atoms are omitted for clarity; Symmetry codes: -x+1, y, -z+3/2 for 1; -x+1, y, -z+1/2 for 2

    Figure 2  Formation of 2D network by hydrogen bonding interactions in 1 (a) and 2 (b)

    Symmetry codes: -x+3/2, y-1/2, -z+3/2; -x+1, y, -z+3/2; x+1/2, y+1/2, z; x+1/2, y-1/2, z; x-1/2, y-1/2, z; x-1/2, y+1/2, z in (a); x, y-1, z; x+1/2, y+1/2, z; -x+3/2, y+1/2, -z+1/2, x+1/2, y+1/2, z; x+1/2, y-1/2, z; x-1/2, y, -1/2 z; x-1/2, y+1/2, z in (b)

    Figure 3  Hydrogen bond parameters in 1 and 2

    Symmetry codes: -x+1, -y+1, -z+1

    Table 1.  Crystallographic data and refinement summary for the 1 and 2

    下载: 导出CSV

    Table 2.  Selected bond lengths (nm) and bond angles (°) for 1 and 2

    1
    Ni1-N1 0.208 6(3) Ni1-N1 0.208 6(3) Ni1-N2 0.208 2(3)
    Ni1-N2 0.208 2(3) Ni1-O1 0.203 6(2) Ni1-O1 0.203 6(2)
    O1-Ni1-O1 94.36(13) N2-Ni1-N1 88.61(10) O1-Ni1-N2 174.77(10)
    N2-Ni1-N1 97.13(10) O1-Ni1-N2 87.75(10) O1-Ni1-N1 87.77(10)
    O1-Ni1-N2 87.75(10) O1-Ni1-N1 86.69(10) O1-Ni1-N2 174.77(10)
    N2-Ni1-N1 97.13(10) N2-Ni1-N2 90.55(15) N2-Ni1-N1 88.61(10)
    O1-Ni1-N1 86.69(10) N1-Ni1-N1 171.85(15) O1-Ni1-N1 87.77(10)
    2
    Ni1-N1 0.208 0(4) Ni1-N1 0.208 0(4) Ni1-N2 0.208 9(4)
    Ni1-N2 0.208 9(4) Ni1-O1 0.203 7(3) Ni1-O1 0.203 7(3)
    O1-Ni1-O1 94.79(18) N1-Ni1-N2 88.88(14) O1-Ni1-N1 86.57(13)
    N1-Ni1-N2 97.56(10) O1-Ni1-N1 87.23(13) O1-Ni1-N2 87.43(13)
    O1-Ni1-N1 87.23(13) O1-Ni1-N2 174.84(14) O1-Ni1-N1 86.57(13)
    N1-Ni1-N2 97.56(14) N1-Ni1-N1 170.8(2) N1-Ni1-N2 88.88(14)
    O1-Ni1-N2 174.84(14) N2-Ni1-N2 90.7(2) O1-Ni1-N2 87.43(13)
    Symmetry transformations used to generate equivalent atoms: -x+1, y, -z+3/2 for 1; -x+1, y, -z+1/2 for 2
    下载: 导出CSV

    Table 3.  Hydrogen bond parameters in 1 and 2

    D-H…A d(D-H)/nm d(H…A)/nm d(D…A)/nm ∠DHA/(°)
    1
    N3-H3 …02 0.086 0.185 7 0.270 4 168.11
    02-H2E …N2 0.085 0.248 5 0.322 6 146.28
    02-H2F …01 0.085 0.191 2 0.264 8 144.09
    C1-H1B …C11 0.097 0.292 4 0.379 6 150.00
    2
    N3-H3 …02 0.086 0.185 0 0.269 9 169.07
    02-H2E …01 0.085 0.191 9 0.265 3 143.87
    02-H2F …N2 0.085 0.249 0 0.323 2 146.31
    Symmetry codes: -x+3/2, y-1/2, -z+3/2; -x+1, y, -z+3/2; -x+1, -y+1, -z+1 for 1; x, y-1, z; x+1/2, y+1/2, z; -x+3/2, y+1/2, -z+1/2 for 2
    下载: 导出CSV

    Table 4.  Antibacterial activities of the ligands and the complexes

    Compound Dose/(μg·mL-1) Inh1b1t1on zone diameter/mm
    S. aureus E. coli
    HL1 125 9 13
    250 11 14
    500 12 16
    HL2 125 10 11
    250 12 12
    500 13 12
    Complex 1 125 11 15
    250 13 15
    500 14 20
    Complex 2 125 16 13
    250 16 15
    500 18 16
    DMSO (AR)
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  808
  • HTML全文浏览量:  97
文章相关
  • 发布日期:  2017-04-10
  • 收稿日期:  2016-11-07
  • 修回日期:  2017-02-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章