Citation: YAN Zi-Jin, SONG Hua, LI Feng, CHEN Yan-guang. Preparation of Zr modified Ni2P/SBA-15 catalysts and its hydrodeoxygenation performance[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(7): 809-817. shu

Preparation of Zr modified Ni2P/SBA-15 catalysts and its hydrodeoxygenation performance

  • Corresponding author: SONG Hua, songhua2004@sina.com
  • Received Date: 6 March 2018
    Revised Date: 25 May 2018

    Fund Project: National Natural Science Foundation of China 21276048Innovative Scientific Research Projects of Innovative Practice Base for Postgraduate Training in Northeast Petroleum University YJSCX2017-016NEPUThe project was supported by National Natural Science Foundation of China(21276048) and Innovative Scientific Research Projects of Innovative Practice Base for Postgraduate Training in Northeast Petroleum University(YJSCX2017-016NEPU)

Figures(8)

  • Ni2P/ZrO2-SBA-15(n) and Ni2P/ZrO2-SBA-15(m) catalysts were prepared from n-propoxide zirconium (n) and Zr(SO4)2(m) as zirconium sources. The catalysts were characterized by X-ray diffraction (XRD), N2 adsorption specific surface area measurements (BET), CO uptake, X-ray photoelectron spectroscopy (XPS) and NH3 temperature programmed desorption (NH3-TPD). The results show that after Zr modification, a new layered structure of ZrP is formed. The introduction of Zr helps to generate more Ni2P active phase with smaller crystal size, and increase both the acid strength and acid amount of the catalyst. Compared with zirconium n-propoxide, the catalyst prepared from Zr(SO4)2 has larger specific surface area, more acid amount, stronger acidity, more ZrP phases, smaller Ni2P crystal grains and more Ni active sites. The product yields of benzofuran hydrodeoxygenation (BF HDO) given by Ni2P/ZrO2-SBA-15(n) and Ni2P/ZrO2-SBA-15(m) were 71.5% and 85.9% respectively, which were increased by 14.0% and 28.4% respectively compared with Ni2P/SBA-15. The BF HDO activity, selectivity and yield of the BF HDO products decreased in the order of Ni2P/ZrO2-SBA-15(m) > Ni2P/ZrO2-SBA-15(n) > Ni2P/SBA-15.
  • 加载中
    1. [1]

      LEON F F, GILLES B, DOROTHÉE L, THOMAS E D, VICTOR T S. Synthesis and hydrodeoxygenation activity of Ni2P/C-Effect of the palladium salt on lowering the nickel phosphide synthesis temperature[J]. J Catal, 2016,340:154-165. doi: 10.1016/j.jcat.2016.05.016

    2. [2]

      SONG H, GONG J, SONG H, LI F, ZHANG J, CHENG Y. Preparation of core-shell structured Ni2P/Al2O3@TiO2 and its hydrodeoxygenation performance for benzofuran[J]. Catal Commun, 2016,85:1-4. doi: 10.1016/j.catcom.2016.07.005

    3. [3]

      CZERNIK S, BRIDGWATER A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy Fuels, 2004,18(2):590-598. doi: 10.1021/ef034067u

    4. [4]

      GOYAL H B, SEAL D, SAXENA R C. Bio-Fuels from thermochemical conversion of renewable resources:A review[J]. Renewable Sustainable Energy Rev, 2008,12(2):504-517. doi: 10.1016/j.rser.2006.07.014

    5. [5]

      GÉRALDINE L, SOIZIC B, JULIE R, FRÉDÉRIC R, ANNE S M, LAURENCE C, ANNIE P, MICHEL R, SYLVETTE B. Effect of the presence of ionic liquid during the NiMoS bulk preparation in the transformation of decanoic acid[J]. Appl Catal A:Gen, 2017,532:120-132. doi: 10.1016/j.apcata.2016.12.020

    6. [6]

      ZHAO H Y, LI D, BUI P, OYAMA S T. Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts[J]. Appl Catal A:Gen, 2011,391(1/2):305-310.  

    7. [7]

      MA H, LI Q, SHI Y, SUN X. Ni2P/ZrO2-SBA-15 dibenzothiophene hydrodesulfurization catalysts:Preparation, characterization and evaluation[J]. Trans Tianjin Univ, 2017:1-11.  

    8. [8]

      LUO N, CAO Y, LI J, GUO W, ZHAO Z. Preparation of Ni2P/ZrO2-MCM-41 catalyst and its performance in the hydrodeoxygenation of Jatropha curcas oil[J]. Chem Technol Fuels Oil, 2016,44(1):76-83. doi: 10.1016/S1872-5813(16)30007-X

    9. [9]

      LIU D, WANG A, LIU C, ROEL P. Ni2P/Al2O3 hydrodesulfurization catalysts prepared by separating the nickel compound and hypophosphite[J]. Catal Today, 2017,292:133-142. doi: 10.1016/j.cattod.2016.09.019

    10. [10]

      FAN G, SHEN M, ZHANG Z, FARUI J. Preparation characterization and catalytic properties of S2O82-/ZrO2-CeO2 solid superacid catalyst[J]. J Rare Earth, 2009,27(3):437-442. doi: 10.1016/S1002-0721(08)60266-5

    11. [11]

      LAYMAN K A, BUSSELL M E. Infrared spectroscopic investigation of CO adsorption on silica-supported nickel phosphide catalysts[J]. J Phys Chem B, 2004,108(30):10930-10941. doi: 10.1021/jp037101e

    12. [12]

      LEE Y K, OYAMA S T. Comparison of structural properties of SiO2, Al2O3, and C/Al2O3 supported Ni2P catalysts[J]. Stud Surf Sci Catal, 2006,159:357-360. doi: 10.1016/S0167-2991(06)81607-1

    13. [13]

      CECILIA J A, INFANTES M A, RODRÍGUEZ C E, JIMÉNEZ L A. A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene[J]. J Catal, 2009,263(J):4-15.  

    14. [14]

      GALTAYRIES A, SPORKEN R, RIGA J, BLANCHARD G, CAUDANO R. XPS comparative study of ceria/zirconia mixed oxides:powders and thin film characterisation[J]. J Electron Spectrosc, 1998,88:951-956.  

    15. [15]

      PAN B, ZHANG Q, DU W, ZHANG W, PAN B, ZHANG Q, XU Z, ZHANG Q. Selective heavy metals removal from waters by amorphous zirconium phosphate:Behavior and mechanism[J]. Water Res, 2007,41(14):3103-3111. doi: 10.1016/j.watres.2007.03.004

    16. [16]

      LI K, WANG R J, CHEN J X. Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts[J]. Energy Fuels, 2011,25:854-863. doi: 10.1021/ef101258j

    17. [17]

      ZHU T, SONG H, DAI X, SONG H. Preparation of Ni2P/Al-SBA-15 catalyst and its performance for benzofuran hydrodeoxygenation[J]. Chin J Chem Eng, 2017,25(12):1784-1790. doi: 10.1016/j.cjche.2017.03.027

    18. [18]

      LAN L, GE S, LIU K, HOU Y, BAO X. Synthesis of Ni2P promoted trimetallic NiMoW/γ-Al2O3 catalysts for diesel oil hydrotreatment[J]. J Nat Gas Chem, 2011,20:117-122. doi: 10.1016/S1003-9953(10)60173-9

    19. [19]

      MOON J S, KIM E G, LEE Y K. Active sites of Ni2P/SiO2 catalyst for hydrodeoxygenation of guaiacol:A joint XAFS and DFT study[J]. J Catal, 2014,311:144-152. doi: 10.1016/j.jcat.2013.11.023

    20. [20]

      LEE C L, OLLIS D F. Catalytic hydrodeoxygenation of benzofuran and o-ethylphenol[J]. J Catal, 1984,87(2):325-331. doi: 10.1016/0021-9517(84)90193-3

    21. [21]

      BENSON S W. Thermochemical Kinetics[M]. New York:Wiley, 1968:23-32.

    22. [22]

      GONÇALVES V O O, DE SOUZA P M, DA SILVA V T, NORONHA F B, RICHARD F. Kinetics of the hydrodeoxygenation of cresol isomers over Ni2P/SiO2:Proposals of nature of deoxygenation active sites based on an experimental study[J]. Appl Catal B:Environ, 2017,205:357-367. doi: 10.1016/j.apcatb.2016.12.051

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    3. [3]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    4. [4]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    5. [5]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    6. [6]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    7. [7]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    8. [8]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    11. [11]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    12. [12]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    13. [13]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    14. [14]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    15. [15]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    20. [20]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(8)
  • Abstract views(1387)
  • HTML views(512)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return