Citation: WANG Dong-zhe, WANG Li-bao, ZHANG Lei, QING Shao-jun, HAN Jiao, ZHANG Cai-shun, GAO Zhi-xian, FENG Xu-hao. Effect of Cr doping on hydrogen production via methanol steam reforming over Cu-Ce composite catalysts[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(5): 619-625. shu

Effect of Cr doping on hydrogen production via methanol steam reforming over Cu-Ce composite catalysts

  • Corresponding author: ZHANG Lei, lpuhangcie163.com
  • Received Date: 30 March 2020
    Revised Date: 5 May 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (21376237), Scientific Research Fund Project of Liaoning Provincial Department of Education (L2019038), General Program of Liaoning Natural Science Foundation (2019-MS-221) and Guidance Project of Liaoning Natural Science Foundation(2019-ZD-0371)the National Natural Science Foundation of China 21376237Guidance Project of Liaoning Natural Science 2019-ZD-0371General Program of Liaoning Natural Science Foundation 2019-MS-221Scientific Research Fund Project of Liaoning Provincial Department of Education L2019038

Figures(9)

  • Cr/Cu-Ce catalyts with different Cr contents were prepared by impregnation method, and their structures, properties and catalytic performance were investigated using N2O titration, H2-TPR and XPS techniques. It is found that the Cr doping changs the specific surface area of copper, the reduction temperature of CuO and oxygen vacancies of the Cu-Ce catalysts. In addition, the catalyst with 3% Cr addition has larger Cu specific surface area, lower CuO reduction temperature and more oxygen vacancies, thus exhibits excellent catalytic performance. The catalytic efficiency reaches 100% and CO volume fraction in outlet gas is 0.15% when the reaction temperature is 533 K, n(water):n(methanol) is 1.2:1 and the feeding rate of methanol and water is 0.072 mL/min. Compared with the un-doped Cr catalyst, the catalytic efficiency increases by 10% and the volume fraction of CO in the outlet gas decreases by 0.34%.
  • 加载中
    1. [1]

      EPPINGER J, HUANG K W. Formic acid as a hydrogen energy carrier[J]. ACS Energy Lett, 2017,2(1):188-195. doi: 10.1021/acsenergylett.6b00574

    2. [2]

      HONG X L, REN S Z. Selective hydrogen production from methanol oxidative steam reforming over Zn-Cr catalysts with or without Cu loading[J]. Int J Hydrogen Energy, 2008,33(2):700-708.  

    3. [3]

      VAZQUEZ F V, SIMELL P, PENNANEN J, LEHTONENB J. Reactor design and catalysts testing for hydrogen production by methanol steam reforming for fuel cells applications[J]. Int J Hydrogen Energy, 2016,41(2):924-935.  

    4. [4]

      MIROSLAV S, ALEKSANDRA M N. Nickel catalysts on porous ceramic supports for the reaction of partial oxidation of propane to CO and H2[J]. J Fluorine Chem, 2017,155(23):132-142.  

    5. [5]

      RICHARDS N O, ERICKSON P A. An investigation of a stratified catalyst bed for small-scale hydrogen production from methanol autothermal reforming[J]. Int J Hydrogen Energy, 2014,39(31):18077-18083. doi: 10.1016/j.ijhydene.2014.03.131

    6. [6]

      LIU Y, HAYAKAWA T, TSUNODA T, SUZUKI K, HAMAKAWA S, MURATA K, SHIOZAKI R, ISHII T, KUMAGAI M. Steam reforming of methanol over Cu/CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts[J]. Top Catal, 2003,22(3/4):205-213. doi: 10.1023/A:1023519802373

    7. [7]

      QIN Zhi-qiang, GAO Wen-gui, WANG Hua, HAN Chong, GUO Wei. Research on rare-earth promoter Pr-modified Cu/Zn/ZrO2 catalyst for methanol synthesis[J]. Chem Ind Eng Prog, 2013,32(4):820-823.  

    8. [8]

      LI J, HAN Y X, ZHU Y H, ZHOU R X. Purification of hydrogen from carbon monoxide for fuel cell application over modified mesoporous CuO-CeO2 catalysts[J]. Appl Catal B:Environ, 2011,108(1/2):72-80.  

    9. [9]

      YANG S Q, ZHOU F, LIU Y J, ZHANG L, CHEN Y, WANG H H, TIAN Y, ZHANG C S, LIU D S. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy, 2019,44(14):7252-7261. doi: 10.1016/j.ijhydene.2019.01.254

    10. [10]

      AMIN N A S, TAN E F, MANAN Z A. Selective reduction of NOx with C3H6 over Cu and Cr promoted CeO2 catalysts[J]. Appl Catal B:Environ, 2003,43(1):57-69. doi: 10.1016/S0926-3373(02)00275-8

    11. [11]

      LI Ji-gang, SUN Jie, ZHANG Li-gong, CHENG Yu-long, QIU Xin-ping, CHEN Li-quan. Hydrogen production by steam reforming of ethanol over flowerlike micro spheres NiO/CeO2 catalyst[J]. J Fuel Chem Technol, 2010,38(3):332-336. doi: 10.3969/j.issn.0253-2409.2010.03.014 

    12. [12]

      LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of support calcination atmospheres on the activity of CuO/CeO2 catalysts for methanol steam reforming[J]. J Fuel Chem Technol, 2018,46(8):992-999. doi: 10.3969/j.issn.0253-2409.2018.08.011 

    13. [13]

      HE Jian-ping, ZHANG Lei, CHEN Lin, YANG Zhan-xu, TONG Yu-fei. Effect of CeO2 on Cu/Zn-Al catalysts derived from hydrotalcite precursor for methanol steam reforming[J]. Chem J Chin Univ, 2017,38(10):1822-1828. doi: 10.7503/cjcu20170158

    14. [14]

      ZHANG Lei, PAN Li-wei, NI Hui, SUN Tian-jun, WANG Shu-dong, HU Yong-kang, WANG Aa-jie, ZHAO Sheng-sheng. Effects of precipitation aging time on the performance of CuO/ZnO/CeO2-ZrO2 for methanol steam reforming[J]. J Fuel Chem Technol, 2013,41(7):883-888. doi: 10.3969/j.issn.0253-2409.2013.07.016

    15. [15]

      YANG Shu-qian, ZHANG Na, HE Jian-ping, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Jian, LIU Dao-sheng, YANG Zhan-xu. Effect of impregnation sequence of Ce on the performance of Cu/Zn-Al catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018,46(4):479-488. doi: 10.3969/j.issn.0253-2409.2018.04.014 

    16. [16]

      WANG Bao-wei, SUN Qi-mei, LI Yan-ping, LIU Si-nian. Photocatalytic activity of nano-CuO/TiO2 composites prepared by a simple impregnated method[J]. J Fuel Chem Technol, 2013,41(6):741-747. doi: 10.3969/j.issn.0253-2409.2013.06.016 

    17. [17]

      DENG Shuang, LI Hui-quan, ZHANG Yi. Preparation, characterization and catalytic activity of nanosized Chromium oxide[J]. Chinese J Inorg Chem, 2003,19(8):825-830. doi: 10.3321/j.issn:1001-4861.2003.08.006

    18. [18]

      WANG Dong-zhe, FENG Xu, ZHANG Jian, CHEN Lin, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Cai-shun. Effect of promoter M (M=Cr, Zn, Y, La) on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol[J]. J Fuel Chem Technol, 2019,47(10):1251-1257. doi: 10.3969/j.issn.0253-2409.2019.10.012 

    19. [19]

      ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013,38(11):4397-4406. doi: 10.1016/j.ijhydene.2013.01.053

    20. [20]

      BARBATO P S, COLUSSI S, BENEDETTO A D, LANDI G, LISI L, LIORCA J, TROVARELLI A. On the origin of high activity and selectivity of CuO/CeO2 catalysts prepared by solution combustion synthesis in CO-PROX reaction[J]. J Phys Chem C, 2016,120(24):13039-13048. doi: 10.1021/acs.jpcc.6b02433

    21. [21]

      SOLEIMANI E, MOGHADDAMI R. Synthesis, characterization and thermal properties of PMMA/CuO polymeric nanocomposites[J]. J Mater Sci-Mater El, 2018,29(6):4842-4854. doi: 10.1007/s10854-017-8440-y

    22. [22]

      LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, BAI Jin, CHEN Lin, LIU Dao-sheng. Effect of CeO2 morphology on the performance of CuO/CeO2 catalysts for methanol steam reforming[J]. Fine Chem, 2018,35(12):2045-2051.  

    23. [23]

      GROHMANN I, KEMNITZ E, LIPPITZ A, UNGER W E S. Curve fitting of Cr 2p photoelectron spectra of Cr2O3 and CrF3[J]. Surf Interface Anal, 1995,23(13):887-891. doi: 10.1002/sia.740231306

    24. [24]

      JING Guo-hua, LI Jun-hua, HAO Ji-ming. Promotional effect of Cr on the activity of In/WO3/ZrO2 for selective reduction of NO with methane[J]. Chin J Catal, 2009,30(10):973-975. doi: 10.3321/j.issn:0253-9837.2009.10.001

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    6. [6]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    7. [7]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    9. [9]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    10. [10]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    15. [15]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    19. [19]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    20. [20]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(7)
  • Abstract views(774)
  • HTML views(163)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return