Citation: LIU Tian-yu, WEN Chang, SHAO Yu-hao, LIU En-ze, PAN Zu-ming, CHEN Sheng, XU Ming-hou. Effects of multiple agglomeration technology on the removal of particulate matters and particulate heavy metals: A pilot study[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(11): 1378-1385. shu

Effects of multiple agglomeration technology on the removal of particulate matters and particulate heavy metals: A pilot study

  • Corresponding author: WEN Chang, wenchang@hust.edu.cn
  • Received Date: 21 September 2020
    Revised Date: 13 October 2020

    Fund Project: Major Project of Technical Innovation of Hubei Province 2017ACA087The project was supported by the National Key R & D Program of China (2018YFB0605104) and Major Project of Technical Innovation of Hubei Province (2017ACA087)the National Key R & D Program of China 2018YFB0605104

Figures(12)

  • The emmision of particulate matters and heavy metals such as As, Se and Pb from coal combustion into the atmosphere would cause a serious environmental and human health hazard. Therefore, a multiple agglomeration based on the principle of turbulent coalescence and wall surface adsorption was developed to investigate the agglomeration effects on the removal of particulate matter and particulate heavy metals. Firstly, a numerical simulation method was adopted to comprehensively study the pressure loss, the velocity uniformity and the particle agglomeration effect, and a folded blade was selected for the multiple agglomeration device. Subsequently, a pilot study at a coal-fired plant on the particle agglomeration at different flue gas velocities was carried out. It is found that the agglomeration rate of PM1 in the multiple agglomeration device is up to 32.84%. As the gas velocity is increased from 11.1 to 17.6 m/s, the agglomeration rate of PM2.5 shows a certain decline, indicating that an increase in gas velocity would lead to a shorter residence time of particles and thus a decrease in agglomeration rate of particles. By comparing the concentration changes of As, Se and Pb in the particles before and after agglomeration, it is found that the agglomeration process can enhance the adsorption to gaseous heavy metals and also aggregate the nano-particles rich in heavy metals, thus resulting in an increase in the concentration of heavy metals in PM1. The decrease of the absolute concentrations of As, Se and Pb in PM1 after coalescence shows a cooperative removal effect in the multiple agglomeration device on the particulate matter and particulate heavy metals.
  • 加载中
    1. [1]

      WEN C, YU D, WANG J, WU J, YAO H, XU M. Effect of the devolatilization process on PM10 formation during oxy-fuel combustion of a typical bituminous coal[J]. Energy Fuels, 2014,28(9):5682-5689. doi: 10.1021/ef501264v

    2. [2]

      WEN C, XU M, ZHOU K, YU D, ZHAN Z, MO X. The melting potential of various ash components generated from coal combustion: Indicated by the circularity of individual particles using CCSEM technology[J]. Fuel Process Technol, 2015,133:128-136. doi: 10.1016/j.fuproc.2015.01.012

    3. [3]

      LI Zhen. Characterization of PM2.5 emissions from conventional coal fired power plants during flue gas cleaning processes[D]. Beijing: Tsinghua University, 2017.

    4. [4]

      YU D, XU M, YAO H, LIU X. Size distributions of major elements in residual ash particles from coal combustion[J]. Chin Sci Bull, 2009,54:958-964.  

    5. [5]

      WANG Chao, LIU Xiao-wei, XU Yi-shu, WU Jian-qun, WANG Jian-pei, XU Ming-hou, LIN Xian-min, LI Hai-shan, XIA Yong-jun. Distribution characteristics of minor and trace elements in fine particulate matters from a 660 MW coal-fired boiler[J]. CIESC J, 2013,8:2975-2981.  

    6. [6]

      XU Ming-hou, WANG Wen-yu, WEN Chang, YU Dun-xi, LIU Xiao-wei. Research development of precipitation technology to accomplish the ultra-low emission from coal-fired power plants[J]. Proc CSEE, 2019,39(22):6627-6640.  

    7. [7]

      XU F, LUO Z, BO W, ZHAO L, GAO X, FANG M, CEN K. Experimental investigation on charging characteristics and penetration efficiency of PM2.5 emitted from coal combustion enhanced by positive corona pulsed ESP[J]. J Electrost, 2009,67(5):799-806. doi: 10.1016/j.elstat.2009.06.002

    8. [8]

      HUANG Q, LI S, SHAO Y, ZHAO Y, YAO Q. Dynamic evolution of impaction and sticking behaviors of fly ash particle in pulverized coal combustion[J]. Proc Combust Inst, 2019,37(4):4419-4426. doi: 10.1016/j.proci.2018.06.035

    9. [9]

      LIU Han-xiao, LI Jian-guo, YAO Yu-ping, GUO Feng, YU Shun-li, CHEN Zhao-mei. Research Progress on PM2.5 turbulent flows and assembling method[J]. Chin Environ Prot Ind, 2013,4:27-30.  

    10. [10]

      ZHANG Peng-fei, MI Jian-chun, PAN Zu-ming. Influences of flue-gas velocity and device-element angle on fine particle amalgamation[J]. Proc CSEE, 2016,36(10):2714-2720.  

    11. [11]

      ZHANG Peng-fei, MI Jian-chun, PAN Zu-ming. Influences of elemental arrangement and particle concentration on fine particle amalgamation[J]. Proc CSEE, 2016,36(6):1625-1632.  

    12. [12]

      YANG Chen-hao. Numerical modelling and experimental investigation of agglomeration characteristics of fine particles in a turbulent agglomerator[D]. Changsha: Changsha University of Science & Technology, 2017.

    13. [13]

      CHEN D, WU K, MI J. Experimental investigation of aerodynamic agglomeration of fine ash particles from a 330 MW PC-fired boiler[J]. Fuel, 2016,165:86-93. doi: 10.1016/j.fuel.2015.10.036

    14. [14]

      CHEN Dong-lin, WU Kang, MI Jian-chun, TANG Bin, FENG Wei, HE Shan-jun. Experimental study of ultrafine particle agglomerator installed on a 300 MW PC-fired boiler[J]. Chin J Environ Eng, 2015,9(4):1926-1930.  

    15. [15]

      CHEN Dong-lin, YANG Chen-hao, WU Kang, LIU Jing. Influences of turbulent agglomeration of fine particles under flue gas parameters[J]. Chin J Environ Eng, 2017,11(9):5084-5090.  

    16. [16]

      XU Y, LIU X, ZHANG P, GUO J, HAN J, ZHOU Z, XU M. Role of chlorine in ultrafine particulate matter formation during the combustion of a blend of high-Cl coal and low-Cl coal[J]. Fuel, 2016,184:185-191. doi: 10.1016/j.fuel.2016.07.015

    17. [17]

      WANG C, LIU X, LI D, SI J, ZHAO B, XU M. Measurement of particulate matter and trace elements from a coal-fired power plant with electrostatic precipitators equipped the low temperature economizer[J]. Proc. Combust. Inst., 2015,35(3):2793-2800. doi: 10.1016/j.proci.2014.07.004

    18. [18]

      JOHNSON K L, KENDALL K, ROBERTS A D. Surface energy and the contact of elastic solids[C]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1971, 324(1558): 301-313.

  • 加载中
    1. [1]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    2. [2]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    3. [3]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    4. [4]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    5. [5]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    6. [6]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    7. [7]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    10. [10]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    11. [11]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    12. [12]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    13. [13]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    14. [14]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    15. [15]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

Metrics
  • PDF Downloads(1)
  • Abstract views(261)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return