Citation: WANG Ji-feng, WANG Hui-min, ZHANG Ya-qing, ZHANG Qiu-lin, NING Ping. Promotion effect of tungsten addition on N2 selectivity of MnOx-Fe2O3 for NH3-SCR[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(7): 814-822. shu

Promotion effect of tungsten addition on N2 selectivity of MnOx-Fe2O3 for NH3-SCR

  • Corresponding author: ZHANG Qiu-lin, qiulinzhang_kmust@163.com
  • Received Date: 22 January 2019
    Revised Date: 24 March 2019

    Fund Project: Analysisand Testing Foundation of Kunming University of Science and Technology 2018M20172107028Analysisand Testing Foundation of Kunming University of Science and Technology 2018M20172207016The project was supported by the National Natural Science Foundation of China (21307047) and Analysisand Testing Foundation of Kunming University of Science and Technology(2018M20172207016, 2018M20172107028)the National Natural Science Foundation of China 21307047

Figures(7)

  • A series of tungsten modified MnOx-Fe2O3 catalysts with different tungsten contents were prepared by sol-gel method. The influence of tungsten on N2 selectivity of NH3-SCR reaction was investigated particularly. Physical and chemical properties of the catalysts were characterized by means of XRD, BET, XPS, H2-TPR, Raman and in situ DRIFTS. The results showed that N2 selectivity of NH3-SCR at high temperature was significantly improved by introducing tungsten. NH3-SCR possessed the best catalytic performance when the tungsten content was 15% (mass ratio), as well as N2O concentration was less than 0.003% within the range of 50-250℃. The primary causes were the phase change from α-Fe2O3 to γ-Fe2O3 due to the introduction of appropriate amount of WO3. Besides, the interaction between tungsten and manganese formed a new amorphous MnWO4 and obtained a large specific surface area. In addition, the ratio of Mn4+/(Mn3++Mn4+) decreased while the content of Fe2+ and surface chemical adsorption oxygen (Oα) increased, thus the oxidability of the catalyst was reduced. Meanwhile, tungsten doping enhanced the content and strength of Lewis acid sites on the surface of catalysts at high temperatures. Moreover, the adsorption of NH3 was enhanced, thus, NH3-SCR reaction was accelerated. The doping of WO3 inhibited the deep oxidation of NO2 to form nitrate species, reduced the content of by-product N2O produced by nitrate species reduction, and significantly improved the NH3-SCR activity and N2 selectivity of WO3-MnOx-Fe2O3 catalyst at experimental temperature.
  • 加载中
    1. [1]

      BOSCH H, JASSEN F. Catalytic reduction of nitrogen oxides. A review on the fundamentals and technology[J]. Catal Today, 1988,4:369-532.

    2. [2]

      LIETTIA L, RAMISB G, BERTI F, TOLEDOC G, ROBBAC D, BUSCAB G, FORZATTI P. Chemical, structural and mechanistic aspects on NOx SCR over commercial and model oxide catalysts[J]. Catal Today, 1998,42:101-116. doi: 10.1016/S0920-5861(98)00081-9

    3. [3]

      RAMIS G, BUSCA G. On the effect of dopants and additives on the state of surface vanadyl centers of vanadia-titania catalysts[J]. Catal Lett, 1993,18:299-303. doi: 10.1007/BF00769450

    4. [4]

      BYRNE J W, CHEN J M, SPERONELLO B K. Selective catalytic reduction of NOx using zeolitic catalysts for high temperature applications[J]. Catal Today, 1992,13:33-42. doi: 10.1016/0920-5861(92)80185-P

    5. [5]

      WING C W, NOBE K. Reduction of NO with NH3 on Al2O3-and TiO2-supported metal oxide[J]. Ind Eng Chem Prod Res Dev, 1986,25:179-186. doi: 10.1021/i300022a010

    6. [6]

      ZHANG C A, CHEN T H, LIU H B, CHEN D, XU B, QING C S. Low temperature SCR reaction over nano-structured Fe-Mn oxides:Characterization, performance, and kinetic study[J]. Appl Sur Sci, 2018,457:1116-1125. doi: 10.1016/j.apsusc.2018.07.019

    7. [7]

      CHEN X H, ZHENG Y Y, ZHANG Y B. MnO2-Fe2O3 catalysts supported on polyphenylene sulfide filter felt by a redox method for the low-temperature NO reduction with NH3[J]. Catal Commun, 2018,105:16-19. doi: 10.1016/j.catcom.2017.09.006

    8. [8]

      WANG Z, SHEN G L, LI J Q, LIU H D, WANG Q, CHEN Y F. Catalytic removal of benzene over CeO2-MnOx composite oxides prepared by hydrothermal method[J]. Appl Catal B:Environ, 2013,138-139:253-259. doi: 10.1016/j.apcatb.2013.02.030

    9. [9]

      ZHANG D S, ZHANG L, SHI L Y, FANG C. In situ supported MnO(x)-CeO(x) on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3[J]. Nanoscale, 2013,5(3):1127-1136. doi: 10.1039/c2nr33006g

    10. [10]

      LIU F D, HE H, ZHANG C B, FENG Z C, ZHENG L R, XIE Y M, HU T D. Selective catalytic reduction of NO with NH3 over iron titanate catalyst:Catalytic performance and characterization[J]. Appl Catal B:Environ, 2010,96(3/4):408-420.

    11. [11]

      YAO X J, ZHANG L, LI L L, LIU L C, CAO Y, DONG X, GAO F, DENG Y, TANG C J, CHEN Z, DONG L, CHEN Y. Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature[J]. Appl Catal B:Environ, 2014,150/151:315-329. doi: 10.1016/j.apcatb.2013.12.007

    12. [12]

      YAO X J, KONG T T, YU S H, LI L L, YANG F M, DONG L. Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature[J]. Appl Sur Sci, 2017,402:208-217. doi: 10.1016/j.apsusc.2017.01.081

    13. [13]

      SINGOREDJO L, KORVER R, KAPTEQN F, MOUHJN J. Alumina supported manganese oxides for the low temperature selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B:Environ, 1992,1:297-316. doi: 10.1016/0926-3373(92)80055-5

    14. [14]

      SHI Y N, CHEN S, SUN H, SHU Y, QUAN X. Low-temperature selective catalytic reduction of NOx with NH3 over hierarchically macro-mesoporous Mn/TiO2[J]. Catal Commun, 2013,42:10-13. doi: 10.1016/j.catcom.2013.07.036

    15. [15]

      LIN Q C, LI J H, MA L, HAO J M. Selective catalytic reduction of NO with NH3 over Mn-Fe/USY under lean burn conditions[J]. Catal Today, 2010,151(3/4):251-256.  

    16. [16]

      LIU F D, HE H, ZHANG C B. Novel iron titanate catalyst for the selective catalytic reduction of NO with NH3 in the medium temperature range[J]. Chem Commun, 2008,17:2043-2045.

    17. [17]

      XIONG Z B, LU C M, GUO D X, ZHANG X L, HAN K H. Selective catalytic reduction of NOx with NH3 over iron-cerium mixed oxide catalyst:Catalytic performance and characterization[J]. J Chem Technol Biot, 2013,88(7):1258-1265. doi: 10.1002/jctb.2013.88.issue-7

    18. [18]

      ZHANG P, LI D X. Selective catalytic reduction of NO with NH3 over iron-vanadium mixed oxide catalyst[J]. Catal Lett, 2014,144(5):959-963. doi: 10.1007/s10562-014-1203-y

    19. [19]

      APOSTOLESCU N, GEIGERAK B, HIZBULLAH K, JANC M T, KURETI S, REICHERT D, SCHOTT F, WEISWEILER W. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts[J]. Appl Catal B:Environ, 2006,62(1/2):104-114.

    20. [20]

      AI-ZENG M, GRVNERT W. Selective catalytic reduction of NO by ammonia over Fe-ZSM-5 catalysts[J]. Chem Commun, 1999:71-72.

    21. [21]

      SUN W B, LI X Y, ZHAO Q, MU J C, CHEN J H. Fe-Mn mixed oxide catalysts synthesized by one-step urea-precipitation method for the selective catalytic reduction of NOx with NH3 at low temperatures[J]. Catal Lett, 2017,148(1):227-234.

    22. [22]

      CHEN Z H, WANG F R, LI H, YANG Q, WANG L F, LI X H. Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase[J]. Ind Eng Chem Res, 2011,51(1):202-212.

    23. [23]

      PARK H, SHIN B, LEE H. Catalytic activity and surface characteristics of WO3-doped MnOx-TiO2 catalysts for low-temperature selective catalytic reduction of NOx with NH3[J]. J Korean Inst Met Mater, 2016,54(10):787-792. doi: 10.3365/KJMM.2016.

    24. [24]

      WANG X M, LI X Y, ZHAO Q D, SUN W B, TADE M, LIU S M. Improved activity of W-modified MnOx-TiO2 catalysts for the selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2016,288:216-222. doi: 10.1016/j.cej.2015.12.002

    25. [25]

      SHI J, ZHANG Z H, CHEN M X, ZHANG Z X, SHANG GUAN W F. Promotion effect of tungsten and iron co-addition on the catalytic performance of MnOx/TiO2 for NH3-SCR of NOx[J]. Fuel, 2017,210:783-789. doi: 10.1016/j.fuel.2017.09.035

    26. [26]

      SHIN B, LEE H, PARK H. Catalytic activity and surface characteristics of WO3-doped MnOx-TiO2 catalysts for low-temperature selective catalytic reduction of NOx with NH3[J]. Korean J Met Mater, 2016,54:787-792. doi: 10.3365/KJMM.2016.

    27. [27]

      CHOUNG J W, NAM I S, HAM S W. Effect of promoters including tungsten and barium on the thermal stability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3[J]. Catal Today, 2006,111(3/4):242-247.  

    28. [28]

      LIU F D, SHAN W P, LIAN Z H, XIE L J, HE H. Novel MnWOx catalyst with remarkable performance for low temperature NH3-SCR of NOx[J]. Catal Sci Technol, 2013,3(10):2699-2707. doi: 10.1039/c3cy00326d

    29. [29]

      SHAN W P, LIU F D, HE H, SHI X Y, ZHANG C B. Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NO(x) with NH3[J]. Chem Commun, 2011,47(28):8046-8048. doi: 10.1039/c1cc12168e

    30. [30]

      SHAN W P, GENG Y, CHEN X L, HUANG N, LIU F D, YANG S J. A highly efficient CeWOx catalyst for the selective catalytic reduction of NOx with NH3[J]. Catal Sci Technol, 2016,6(4):1195-1200. doi: 10.1039/C5CY01282A

    31. [31]

      HEINZ W, ULRIKE G, PAUL R M, BRIAN B B. Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina[J]. Vision Res, 1994,34:561-579. doi: 10.1016/0042-6989(94)90013-2

    32. [32]

      WANG Qi-ying, LIU Zi-li, ZOU Han-bo, ZHAO Chao-hui, WEI Xing-chuan. Effect of surfactant modification on desulfurization performance of Zn/Ti-PILCs adsorbent[J]. J Fuel Chem Technol, 2011,39(3):203-206. doi: 10.3969/j.issn.0253-2409.2011.03.008 

    33. [33]

      LEE J, KWAK S Y. Mn-doped maghemite (γ-Fe2O3) from metal-organic framework accompanying redox reaction in a bimetallic system:The structural phase transitions and catalytic activity toward NOx removal[J]. ACS Omega, 2018,3:2634-2640. doi: 10.1021/acsomega.7b01865

    34. [34]

      ZHANG Xin-li, WANG Dong, PENG Jian-sheng, LU Chun-mei, XU Li-ting. Effect of calcination temperature on structure of Mn Modified γ-Fe2O3 catalyst and denitration activity of low temperature SCR[J]. J Fuel Chem Technol, 2015,43(2):244-250.  

    35. [35]

      LEE J, KWAK S Y. Mn-doped maghemite (γ-Fe2O3) from metal-organic framework accompanying redox reaction in a bimetallic system:The structural phase transitions and catalytic activity toward NOx removal[J]. ACS Omega, 2018,3(3):2634-2640. doi: 10.1021/acsomega.7b01865

    36. [36]

      WANG F, GUI K T, YAO G H. The comparison about selective catalytic reduction of De-NOx on iron-based magnetic materials[C]. Proceedings of the Chinese Society of Electrical Engineering, 2009, 29: 47-51.

    37. [37]

      WANG Dong. Preparation of Synth-maghemite (γ-Fe2O3) Catalyst and Optimization of NH3-SCR Performance[D]. Jinan: Shan Dong University, 2016.

    38. [38]

      CHEN Jia-ning, LIU Yong-mei. Effect of synergistic effect of K and Mn additives on the performance of CO-hydrogenation of low-carbon olefins over Fe-based catalysts[J]. J Fuel Chem Technol, 2013,41(12):1488-1494.  

    39. [39]

      SHEBANOVA O N, LAZOR P. Raman study of magnetite (Fe3O4):Laser-induced thermal effects and oxidation[J]. J Raman Spectr, 2003,34(11):845-852. doi: 10.1002/(ISSN)1097-4555

    40. [40]

      LI Y, LI Y P, WANG P F, HU W P, ZHANG S G, SHI Q, ZHAN S H. Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods[J]. Chem Eng J, 2017,330:213-222. doi: 10.1016/j.cej.2017.07.018

    41. [41]

      RAMESH K, CHEN L W, CHEN F X, LIU Y, WANG Z, HAN Y F. Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts[J]. Catal Today, 2008,131(1/4):477-482.  

    42. [42]

      CASAPU M, KRÖCHER O, ELSENER M. Screening of doped MnOxCeO2 catalysts for low-temperature NO-SCR[J]. Appl Catal B:Environ, 2009,88(3/4):413-419.

    43. [43]

      SONG Zhong-xian, NING Ping, LI Hao, ZHANG Qiu-lin, ZHANG Teng-fei, HUANG Zhen-zhen. Effect of different Ce/Mn molar ratios on the selective catalytic reduction of NO by CeO2-MnOx catalyst at low temperature NH3[J]. J Mol Catal, 2015, 29(5): 422-429.

    44. [44]

      XU H D, LIN Q J, WANG Y, LAN L, WANG J L, CHEN Y Q. Promotional effect of niobium substitution on the low-temperature activity of a WO3/CeZrOx monolithic catalyst for the selective catalytic reduction of NOx with NH3[J]. RSC Adv, 2017,7:47570-47582. doi: 10.1039/C7RA08429C

    45. [45]

      WANG J P, YAN Z, LIU L L, CHEN Y, ZHANG Z T, WANG X D. In situ DRIFTS investigation on the SCR of NO with NH3 over V2O5 catalyst supported by activated semi-coke[J]. Appl Surf Sci, 2014,313:660-669. doi: 10.1016/j.apsusc.2014.06.043

    46. [46]

      CHEN L, LI J H, GE M F, MA L, CHANG H Z. Mechanism of selective catalytic reduction of NOx with NH3 over CeO2-WO3 catalysts[J]. Chin J Catal, 2011,32:836-841. doi: 10.1016/S1872-2067(10)60195-7

    47. [47]

      LIU F D, HE H, ZHANG C B, SHAN W B, SHI X Y. Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friendly iron titanate catalyst[J]. Catal Today, 2011,175(1):18-25.

    48. [48]

      KANTCHEVA M. Identification stability and reactivity of NOx species adsorbed on titania-supported manganese catalysts[J]. J Catal, 2001,204(2):479-494. doi: 10.1006/jcat.2001.3413

    49. [49]

      LIU Z M, ZHANG S X, LI J H, MA L L. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS[J]. Appl Catal B:Environ, 2014,144:90-95. doi: 10.1016/j.apcatb.2013.06.036

    50. [50]

      MA Z R, WU X D, HANNA HARELIND, WENG D, WANG B D, SI Z C. NH3-SCR reaction mechanisms of NbOx/Ce0.75Zr0.25O2 catalyst:DRIFTS and kinetics studies[J]. J Mol Catal A:Chem, 2016,423:172-180. doi: 10.1016/j.molcata.2016.06.023

    51. [51]

      ZHANG R D, YANG W, LUO N, LI P X, LEI Z G, CHEN B H. Low-temperature NH3-SCR of NO by lanthanum manganite perovskites:Effect of A-/B-site substitution and TiO2/CeO2 support[J]. Appl Catal B:Environ, 2014,146:94-104. doi: 10.1016/j.apcatb.2013.04.047

    52. [52]

      TANABE K. Catalytic application of niobium compounds[J]. Catal Today, 2003,78(1/4):65-77.

    53. [53]

      ZIOLEK M. Niobium-containing catalysts the state of the art[J]. Catal Today, 2003,78(1/4):47-64.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    7. [7]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    8. [8]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    9. [9]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    10. [10]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    15. [15]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    16. [16]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    17. [17]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    18. [18]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(6)
  • Abstract views(993)
  • HTML views(131)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return