Citation: NIU Ru-jie, WANG Cheng-zhang, LIU Xiao-yue, YI Chun-xiong, CHEN Liang, MI Tie, WU Zheng-shun. Preparation of Zr-based perovskite supported Fe2O3 catalyst and its performance in the reverse water gas shift reaction[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(1): 92-97. shu

Preparation of Zr-based perovskite supported Fe2O3 catalyst and its performance in the reverse water gas shift reaction

  • Corresponding author: WU Zheng-shun, wuzs@mail.cccnu.edu.cn
  • Received Date: 16 July 2018
    Revised Date: 9 November 2018

    Fund Project: the Program of Introducing Talents of Discipline to University of China 111 programThe project was supported by National Natural Science Foundation of China (51676081), the Open Fund from Hubei Key Laboratory of Industrial Fume & Dust Pollution Control (HBIK2017-04) and the Program of Introducing Talents of Discipline to University of China(111 program, B17019)National Natural Science Foundation of China 51676081the Program of Introducing Talents of Discipline to University of China B17019the Open Fund from Hubei Key Laboratory of Industrial Fume & Dust Pollution Control HBIK2017-04

Figures(9)

  • BaZr0.9Y0.1O3 with perovskite structure was prepared by solid-phase reaction method and used as support to prepare Fe2O3 based catalysts. X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) were used to observe the crystal phase structure and microscopic morphology of the prepared catalysts. The catalyst performance for the reverse water gas shift reaction was also investigated. The results showed that the supported catalyst has better catalytic activity when the BaZr0.9Y0.1O3 powder was calcined at 1200℃ for 5 h. BaZr0.9Y0.1O3 has an obvious catalytic effect on the reverse water gas reaction, and the Fe2O3-supported catalyst can significantly promote CO2 reduction. Moreover, loading small amount of Fe2O3 has apparent effect on the reactivity of the catalyst. When the space velocity was 1.13 h-1, the CO yield can reach 31% at 650℃. Carbon deposition on the catalyst during the CO2 reduction process was taking place in a low rate, leading to a significant increase in the CO yield in the process of cooling-down experiment. In addition, the activity of the catalyst did not significantly decrease after a long period of reaction, which proved that the activity of the prepared catalyst was relatively stable.
  • 加载中
    1. [1]

      CHENG Wei. The theme of the national symposium of the American chemical society is the technology of CO2 conversion to fuel[J]. Pet Process Petrochem, 2014,45(1)76.  

    2. [2]

      DAZA Y A, KENT R A, YUNG M M, KUHN J N. Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskite-type oxides[J]. Ind Eng Chem Res, 2014,53(14):5828-5837. doi: 10.1021/ie5002185

    3. [3]

      OSHIMA K, SHINAGAWA T, NOGAMI Y, MANBE R, OGO S, SEKINE Y. Low temperature catalytic reverse water gas shift reaction assisted by an electric field[J]. Catal Today, 2014,232:27-32. doi: 10.1016/j.cattod.2013.11.035

    4. [4]

      PETTIGREW D J, TRIMM D L. The effects of rare earth oxides on the reverse water-gas shift reaction on palladium/alumina[J]. Cataly Lett, 1994,28(2):313-319.  

    5. [5]

      GOGATE M R, DAVIS R J. Comparative study of CO and CO2, hydrogenation over supported Rh-Fe catalysts[J]. Catal Commun, 2010,11(10):901-906. doi: 10.1016/j.catcom.2010.03.020

    6. [6]

      KIM S S, PARK K H, HONG S C. A study of the selectivity of the reverse water-gas-shift reaction over Pt/TiO2 catalysts[J]. Fuel Process Technol, 2013,108:47-54. doi: 10.1016/j.fuproc.2012.04.003

    7. [7]

      WANG X, SHI H, KWAK J H, SZANYI J. Mechanism of CO2 hydrogenation on Pd/Al2O3 catalysts:Kinetics and transient DRIFTS-MS studies[J]. ACS Catal, 2015,5(11):6337-6349. doi: 10.1021/acscatal.5b01464

    8. [8]

      LIU Y, LIU D. Study of bimetallic Cu-Ni/γ-Al2O3 catalysts for carbon dioxide hydrogenation[J]. Int J Hydrogen Energy, 1999,24(4):351-354. doi: 10.1016/S0360-3199(98)00038-X

    9. [9]

      RONDA-LLORET M, RICO-FRANCES S, SEPULVEDA-ESCRIBANO A, RAMOS-FERNANDEZ E V. CuO/CeO2 catalyst derived from metal organic framework for reverse water-gas shift reaction[J]. Appl Catal A:Gen, 2018,562:28-36. doi: 10.1016/j.apcata.2018.05.024

    10. [10]

      HE Xiao-xiang, GU Xiong-yi, FAN Chen, ZHU Yi-an. DFT study of reverse water-gas shift reaction on Fe3O4 surface[J]. J East China Univ Sci Technol, 2011,37(4):424-429.  

    11. [11]

      DAI Bi-can, ZHOU Gui-lin. Perspective on catalyst investigation for reverse water-gas shift reaction (RWGS)[J]. Chem Ind Eng Process, 2017,36(7):2473-2480.  

    12. [12]

      LI Jun, CUI Feng-xia, LI Rong. Research progress on carbon dioxide reduction technology[J]. Spec Petrochem, 2017,34(2):75-82. doi: 10.3969/j.issn.1003-9384.2017.02.018

    13. [13]

      KIM D H, HAN S W, YOON H S, KIM Y D. Reverse water gas shift reaction catalyzed by Fe nanoparticles with high catalytic activity and stability[J]. J Ind Eng Chem, 2015,23:67-71. doi: 10.1016/j.jiec.2014.07.043

    14. [14]

      ERTL G, KNOTZINGER H, SCHUTH F, WEITCAMP J. Handbook of Heterogeneous Catalysis[M]. Germany:VCH Publishers, 2007.

    15. [15]

      KIM D H, PARK J L, PARK E J, KIM Y D, Uhm S. Dopant effect of barium zirconate-based perovskite-type catalysts for the intermediate-temperature reverse water gas shift reaction[J]. ACS Catal, 2014,4(9):3117-3122. doi: 10.1021/cs500476e

    16. [16]

      WANG Tong-Tong. Preparation of dual phase ceramic hollow fiber membranes and application in NH3 decomposition for hydrogen production[D]. Shandong: Shandong University of Technology.

    17. [17]

      CAO Jia-feng, ZHU Zhi-wen, LIU Wei. Review on perovskite electrolyte for proton-conducting solid oxide fuel cells[J]. J Chin Silic Soc, 2015,43(6):734-740.  

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

Metrics
  • PDF Downloads(7)
  • Abstract views(2730)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return