Citation: DONG Jun, CHI Yong, TANG Yuan-jun, NI Ming-jiang, HUANG Qun-xing, ZHOU Zhao-zhi. Fate of heavy metals during fluidized-bed thermal treatment of municipal solid waste[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(1): 120-128. shu

Fate of heavy metals during fluidized-bed thermal treatment of municipal solid waste

  • Corresponding author: CHI Yong, chiyong@zju.edu.cn
  • Received Date: 1 July 2015
    Revised Date: 3 September 2015

    Fund Project: The project was supported by the Major State Basic Research Development Program of China 2011CB201506

Figures(7)

  • Municipal solid waste pyrolysis, gasification and incineration experiments were conducted in a fluidized bed reactor to investigate the effect of redox atmosphere and temperature on the fate of heavy metals (Cd, Pb, Zn and Cu). The results show that higher temperature and reductive atmosphere are effective for the evaporation of Cd, Pb and Zn; while the oxidative condition favors the migration of Cu. Thermodynamic equilibrium calculation confirms that the metal species differ a lot under redox conditions. Metals are mainly existed as elemental forms or sulfide under reductive atmosphere; and their volatility depends on the metal boiling point dominantly. On the contrary, the formation of metal chlorides such as CuCl3 increases the volatilization of Cu in an oxidative atmosphere. Besides, the evaporation of Cd, Pb and Zn is postponed under oxidative condition due to the metal-matrix reactions. The distribution of heavy metals in different fractions was further examined. The majority of the vaporized metals are condensed and enriched in the fly ash upon cooling. Entrainment also poses a significant influence on the migration of metals, which is determined by the characteristics of high gas velocity used in fluidized bed.
  • 加载中
    1. [1]

      ZHANG Li-jing, YU Du-jiang, HUANG Qun-xing, CHI Yong. Gasification and melting characteristics of MSW in China[J]. J Combust Sci Technol, 2013,19(5):418-424.  

    2. [2]

      CHENG H, ZHANG Y, MENG A, LI Q. Municipal solid waste fueled power generation in China: A case study of waste-to-energy in Changchun city[J]. Environ Sci Technol, 2007,41(21):7509-7515. doi: 10.1021/es071416g

    3. [3]

      PORTEOUS A. Energy from waste incineration-a state of the art emissions review with an emphasis on public acceptability[J]. Appl Energy, 2001,70(2):157-167. doi: 10.1016/S0306-2619(01)00021-6

    4. [4]

      CHEN Chong. Experimental study and process simulation on MSW pyrolysis and gasification in fixed bed[D]. Hangzhou: Zhejiang University, 2011. 

    5. [5]

      ARENA U. Process and technological aspects of municipal solid waste gasification. A review[J]. Waste Manage, 2012,23(4):625-639.  

    6. [6]

      ZHANG Ruo-bing, CHI Yong, LU Sheng-yong, XU Xu, HE Jie, YAN Jian-hua, CEN Ke-fa. Study on distribution characteristics of heavy metals from municipal solid waste incineration[J]. J Eng Thermophys, 2003,24(1):149-152.  

    7. [7]

      WANG Xin-ye, HUANG Ya-ji, ZHONG zhao-ping, NIU Miao-miao, SUN Yu, ZHANG Qiang. Experimental study on the capture of heavy metals by in-furnace additives during MSW incineration[J]. Proc CSEE, 2012,32(32):15-21.  

    8. [8]

      LI Jian-xin, YAN Jian-hua, CHI Yong, NI Ming-jiang, CEN Ke-fa. Heavy metals emission from a fluidized-bed MSW incinerator[J]. Proc CSEE, 2004,23(12):179-183.  

    9. [9]

      VERHULST D, BUEKENS A, SPENCER P J, ERIKSSON G. Thermodynamic behavior of metal chlorides and sulfates under the conditions of incineration furnaces[J]. Environ Sci Technol, 1995,30(1):50-56.  

    10. [10]

      BELEVI H, LANGMEIER M. Factors determining the element behavior in municipal solid waste incinerators. 2. Laboratory experiments[J]. Environ Sci Technol, 2000,34(12):2507-2512. doi: 10.1021/es991079e

    11. [11]

      CHEN Yong, ZHANG Yan-guo, LI Qing-hai, ZHUO Yu-qun, CHEN Chang-he. Effects of chlorides on Cd partitioning and speciation in a simulated MSW incinerator[J]. Environ Sci, 2008,29(5):1446-1451.  

    12. [12]

      HUANG Q, CAI X, ALHADJ MALLAH M M, CHI Y, YAN J. Effect of HCl/SO2/NH3/O2 and mineral sorbents on the partitioning behaviour of heavy metals during the thermal treatment of solid wastes[J]. Environ Technol, 2014:1-7.

    13. [13]

      WU Zhen-fen, SU You-yong, WANG Hua, HU Jian-hang, ZHAO Yi-qun. Effect of atmospheres on transfer characteristic of heavy metals during municipal solid waste incineration process[J]. Chin J Environ Eng, 2011,5(7):1623-1626.  

    14. [14]

      WU M H, LIN C L, ZENG W Y. Effect of waste incineration and gasification processes on heavy metal distribution[J]. Fuel Process Technol, 2014,125:67-72. doi: 10.1016/j.fuproc.2014.03.027

    15. [15]

      DOND J, CHI Y, ZOU D, FU C, HUANG Q, NI M. Comparison of municipal solid waste treatment technologies from a life cycle perspective in China[J]. Waste Manag Res, 2014,32(1):13-23. doi: 10.1177/0734242X13507311

    16. [16]

      United States Environmental Protection Agency, Method 5-Determination of Particulate Matter Emissions from Stationary Sources[S]. Washington, DC: Office of Air Quality Planning and Standards, 1996.

    17. [17]

      United States Environmental Protection Agency, Method 29-Determination of Metals Emissions from Stationary Sources[S]. Washington, DC: Office of Air Quality Planning and Standards, 1996.

    18. [18]

      BARTON R G, CLARK W, SEEKER W. Fate of metals in waste combustion systems[J]. Combust Sci Technol, 1990,74(1/6):327-342.  

    19. [19]

      HUANG Ya-ji, JIN Bao-sheng, ZHONG Zhao-ping, XIAO Rui, ZHOU Hong-cang. The relationship between occurrence of trace elements and gasification temperature[J]. Proc CSEE, 2006,26(4):10-15.  

    20. [20]

      YU J, SUN L, XIANG J, SONG H, SHENG S, QIU J. Vaporization of heavy metals during thermal treatment of model solid waste in a fluidized bed incinerator[J]. Chemosphere, 2012,86(11):1122-1126. doi: 10.1016/j.chemosphere.2011.12.010

    21. [21]

      ZHANG H, HE P J, SHAO L M. Fate of heavy metals during municipal solid waste incineration in Shanghai[J]. J Hazard Mater, 2008,156(1):365-373.  

    22. [22]

      LU S, DU Y, ZHONG D, ZHAO B, LI X, XU M, LI Z, LUO Y, YAN J, WU L. Comparison of trace element emissions from thermal treatments of heavy metal hyperaccumulators[J]. Environ Sci Technol, 2012,46(9):5025-5031. doi: 10.1021/es202616v

  • 加载中
    1. [1]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    8. [8]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    12. [12]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    13. [13]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    16. [16]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    17. [17]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    18. [18]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    19. [19]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(2)
  • Abstract views(1723)
  • HTML views(676)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return