Citation: Bai Qingqing, Wu Xiaoning, Wang Qian, Li Rong, Wang Xiaofei. Research Progress in Enlargement of pH in Fenton Reaction[J]. Chemistry, ;2018, 81(3): 217-222. shu

Research Progress in Enlargement of pH in Fenton Reaction

  • Corresponding author: Wang Qian, xatutougao@163.com
  • Received Date: 26 October 2017
    Accepted Date: 18 December 2017

  • Fenton technology is an effective method for the treatment of non-biodegradable organic pollutants. It can be carried out under mild conditions, but with the disadvantage of narrow pH range. In this paper, different methods of improving the catalyst and oxidant to expand the pH range were discussed, and the reaction mechanism of broadening the pH range was summarized. The catalyst modification includes the use of supported catalysts, iron and iron mineral catalysts, modified catalysts, non-ferrous metal active sites, etc. These catalysts can broaden the Fenton reaction pH range for their high catalytic activity over the wide pH range. Improvements to oxidants include the use of H2O2-containing solid oxidants such as percarbonates and persulfates, etc., using their own properties to achieve the purpose of broadening the pH range. Through the simultaneous improvement of the catalyst and the oxidant, the pH range of the Fenton reaction can be effectively broadened, and the formation of iron sludge can be avoided at the same time.
  • 加载中
    1. [1]

      P K Malik, S K Saha. Sep. Purif. Technol., 2003, 31(3):241~250. 

    2. [2]

      J H Sun, S P Sun, G L Wang et al. Dyes Pigments, 2007, 74(3):647~652. 

    3. [3]

      L Zhou, Y Shao, J Liu et al. ACS. Appl. Mater. Interf., 2014, 6(10):7275~7285. 

    4. [4]

       

    5. [5]

      D Nguyen, Z Zhang, W O S Doherty. J. Agr. Food Chem., 2015, 63(5):1582~1592. 

    6. [6]

      H J H Fenton. J. Chem. Soc., Transac., 1984, 65:899~910.

    7. [7]

      N Masomboon, C Ratanatamskul, M C Lu. Environ. Sci. Technol., 2009, 43(22):8629~8634. 

    8. [8]

      G Zhang, Y Gao, Y Zhang et al. Environ. Sci. Technol., 2010, 44(16):6384~6389. 

    9. [9]

      S W Yin, M Rafatullah, A F M Alkarkhi et al. Desali. Water Treat., 2014, 52(22-24):4583~4591. 

    10. [10]

       

    11. [11]

      F L Y Lam, X Hu. Ind. Eng. Chem. Res., 2013, 52(20):6639~6646. 

    12. [12]

      Y Yao, Y Mao, B Zheng et al. Ind. Eng. Chem. Res., 2014, 53(20):8376~8384. 

    13. [13]

      Z Xu, C Huang, L Wang et al. Ind. Eng. Chem. Res., 2015, 54(16):4593~4602. 

    14. [14]

      J Ma, Q Yang, Y Wen et al. Appl. Catal. B, 2017, 201:232~240. 

    15. [15]

       

    16. [16]

      L Xu, J Wang. J. Hazard. Mater., 2011, 186(1):256~264. 

    17. [17]

      W Li, Y Wang, A Irini. Chem. Eng. J., 2014, 244(2):1~8.

    18. [18]

       

    19. [19]

      L Wei, Y Wang, Z Ai et al. ACS. Appl. Mater. Interf., 2015, 7(51):28534~28544. 

    20. [20]

      W Huang, M Brigante, F Wu et al. Environ. Sci. Technol., 2013, 47(4):1952~1959. 

    21. [21]

      Z H Diao, X R Xu, D Jiang et al. J. Hazard. Mater., 2017, 327:108~115. 

    22. [22]

      X Hou, X Huang F Jia et al. Environ. Sci. Technol., 2017, 51(9):5118~5126. 

    23. [23]

      Z Ma, L Ren, SXing et al. J. Phys. Chem. C, 2015, 119(40):23068~23074. 

    24. [24]

      T Xu, R Zhu, G Zhu et al. Appl. Catal. B, 2017, 212(5):50~58.

    25. [25]

       

    26. [26]

      S H Tian, Y T Tu, D S Chen et al. Chem. Eng. J., 2011, 169(1):31~37.

    27. [27]

      L Lyu, L Zhang, Q Wang et al. Environ. Sci. Technol., 2015, 49(14):8639~8647. 

    28. [28]

      E J Kim, D Oh, C S Lee et al. Catal. Today, 2017, 282(1):71~76.

    29. [29]

       

    30. [30]

       

    31. [31]

      H Gao, J Chen, Y Zhang et al. Chem. Eng. J., 2016, 306:522~530. 

    32. [32]

       

    33. [33]

       

    34. [34]

       

    35. [35]

       

    36. [36]

      K Nakashima, Y Ebi, M Kubo et al. Ultrason. Sono. Chem., 2016, 29:455~460. 

    37. [37]

      L Qi, G Zuo, Z Cheng et al. Chem. Eng. J., 2013, 229(4):197~205.

    38. [38]

      A Long, L Yang, H Zhang. Ind. Eng. Chem. Res., 2014, 53(3):1033~1039. 

    39. [39]

      G Liu, X Li, B Han et al. J. Hazard. Mater., 2017, 322:461~468. 

    40. [40]

      J Zou, J Ma, L Chen et al. Environ. Sci. Technol., 2013, 47(20):11685~11691. 

    41. [41]

      X Zang, X Gu, S Lu et al. Environ. Sci. Technol., 2014, 35(7):791~798. 

    42. [42]

      Z Miao, X Gu, S Lu et al. Chemosphere, 2015, 119:1120~1125. 

    43. [43]

      Y Lei, C S Chen, Y J Tu et al. Environ. Sci. Technol., 2015, 49(11):6838~6845. 

    44. [44]

      X Li, Z Wang, B Zhang et al. Appl. Catal. B, 2016, 181:788~799. 

    45. [45]

      H Cui, X Gu, S Lu et al. Chem. Eng. J., 2017, 309(1):80~88.

    46. [46]

      K Y A Lin, J T Lin, Y F Lin. J. Taiwan Inst. Chem. Eng., 2017, 19(36):1~6.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    4. [4]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    5. [5]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    10. [10]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    11. [11]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    12. [12]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    13. [13]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    14. [14]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    15. [15]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    17. [17]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(30)
  • Abstract views(2404)
  • HTML views(1026)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return