Citation: Pan Yingying, Hu Xi, Lin Xiaoming, Xu Xuan, Luo Yifan. The Application of Core-Shell MOFs and Their Derivatives as Anode Materials in Lithium-Ion Batteries[J]. Chemistry, ;2020, 83(10): 883-890. shu

The Application of Core-Shell MOFs and Their Derivatives as Anode Materials in Lithium-Ion Batteries

Figures(5)

  • Metal-organic frameworks (MOFs) materials are widely used in the field of electrochemical energy conversion and storage, with the advantages of large specific surface area, adjustable pore size, easy preparation, structural and functional diversity. Among them, the unique core-shell materials often show more synergy between the core and shell due to the surface modification. This article introduces the development status of core-shell MOFs as anode materials for lithium-ion batteries, and focuses on the preparation methods of their derivatives (porous carbon, metal oxides, metal sulfur/selenide, metal/metal oxides) and their applications. MOFs can produce traditional inorganic electrode materials with adjustable structure and exhibit more excellent electrochemical performance by calcining at high temperature or changing the chemical reaction conditions. Finally, the problems and challenges of core-shell MOFs as anode materials for lithium-ion battery are summarized, and possible solutions and future application prospects are proposed.
  • 加载中
    1. [1]

      Gao F, Liu H, Yang K, et al. Int. J. Electrochem. Sci., 2020, 15: 1391-1411.

    2. [2]

      Shrivastav V, Sundriyal S, Goel P, et al. Coord. Chem. Rev., 2019, 393: 48-78. 

    3. [3]

      Atashrouz S, Rahmani M. Neural. Comput. Appl., 2020, 1-14.

    4. [4]

      Gao J, Mao H, Jin H, et al. Micropor. Mesopor. Mater., 2020, 297: 110030. 

    5. [5]

      Li K, Lin Y Z, Wang K, et al. Appl. Catal. B, 2020, 268: 118402. 

    6. [6]

      Liu Y, Zhao W, Li X, et al. Appl. Surf. Sci., 2020, 512: 145710. 

    7. [7]

      Chowdhuri A R, Laha D, Chandra S, et al. Chem. Eng. J., 2017, 319: 200-211. 

    8. [8]

      Li G L, Möhwald H, Shchukin D G. Chem. Soc. Rev., 2013, 42(8): 3628-3646. 

    9. [9]

      Lu W, Guo X, Luo Y, et al. Chem. Eng. J., 2019, 355: 208-237. 

    10. [10]

      Zhu W, Chen Z, Pan Y, et al. Adv. Mater., 2019, 31(38): 1800426. 

    11. [11]

      Zhang L, Liu H, Shi W, et al. Coord. Chem. Rev., 2019, 388: 293-309. 

    12. [12]

      Sun X, Gao G, Yan D, et al. Appl. Surf. Sci., 2017, 405: 52-59. 

    13. [13]

      Zhou Y, Huang Q, Low C T J, et al. New J. Chem., 2019, 43(14): 5632-5641. 

    14. [14]

      Wang B, Wang Z, Cui Y, et al. RSC Adv., 2015, 5(103): 84662-84665. 

    15. [15]

      Zheng X, Li Y, Xu Y, et al. CrystEngComm, 2012, 14(6): 2112-2116. 

    16. [16]

      Huang G, Yin D M, Wang L M. J. Mater. Chem. A, 2016, 4(39): 15106-15116. 

    17. [17]

      Geng H, Peng Y, Qu L, et al. Adv. Energy Mater., 2020, 10(10): 190330.

    18. [18]

      Dai C, Sun G, Hu L, et al. InfoMat, 2020, 2(3): 509-526. 

    19. [19]

      Sun J K, Xu Q. Energy Environ. Sci., 2014, 7(7): 2071-2100. 

    20. [20]

      Liu B, Shioyama H, Akita T, et al. J. Am. Chem. Soc., 2008, 130(16): 5390-5391. 

    21. [21]

      Liu Y, Xu X, Shao Z. Energy Storage Mater., 2020, 26: 1-22. 

    22. [22]

      Zeng X R, Jin W W, Li H J, et al. Nanotechnology, 2020, 31(15): 155602. 

    23. [23]

      Eddaoudi M, Kim J, Rosi N, et al. Science, 2002, 295(5554): 469-472. 

    24. [24]

      Ahnfeldt T, Gunzelmann D, Loiseau T, et al. Inorg. Chem., 2009, 48(7): 3057-3064. 

    25. [25]

      Wang X, Zhong W, Li Y. Catal. Sci. Technol., 2015, 5(2): 1014-1020. 

    26. [26]

      Shi Y, Zhang X, Wang L, et al. AIChE J., 2014, 60(8): 2747-2751. 

    27. [27]

      Zuo L, Chen S, Wu J, et al. RSC Adv., 2014, 4(106): 61604-61610. 

    28. [28]

      Liu N, Liu J, Jia D, et al. Energy Storage Mater., 2019, 18: 165-173. 

    29. [29]

      Wang K, Pei S, He Z, et al. Chem. Eng. J., 2019, 356: 272-281. 

    30. [30]

      Zhang W, Wang B, Luo H, et al. J. Alloy. Compd., 2019, 803: 664-670. 

    31. [31]

      Pei X, Chen Y, Li S, et al. Chin. J. Chem., 2016, 34(2): 157-174. 

    32. [32]

      Huang X C, Lin Y Y, Zhang J P, et al. Angew. Chem. Int. Ed., 2006, 45(10): 1557-1559. 

    33. [33]

      Jeon J W, Sharma R, Meduri P, et al. ACS Appl. Mater. Interf., 2014, 6(10): 7214-7222. 

    34. [34]

      Majeed M K, Ma G, Cao Y, et al. Chem. Eur. J., 2019, 25(51): 11991-11997. 

    35. [35]

      Chen D, Chen G, Pei J, et al. New J. Chem., 2017, 41(15): 6973-6976. 

    36. [36]

      Guo W, Sun W, Wang Y. ACS Nano, 2015, 9(11): 11462-11471. 

    37. [37]

      Lu Y, Yu L, Wu M, et al. Adv. Mater., 2018, 30(1): 1702875. 

    38. [38]

      Wang D P, Fu M, Ha Y, et al. J. Colloid Interf. Sci., 2018, 529: 265-272. 

    39. [39]

      Wang B, Wang Z, Cui Y, et al. Micropor. Mesopor. Mater., 2015, 203: 86-90. 

    40. [40]

      Huang G, Zhang F, Zhang L, et al. J. Mater. Chem. A, 2014, 2(21): 8048-8053. 

    41. [41]

      Huang G, Zhang L, Zhang F, et al. Nanoscale, 2014, 6(10): 5509-5515. 

    42. [42]

      Wu Y, Meng J, Li Q, et al. Nano Res., 2017, 10(7): 2364-2376. 

    43. [43]

      Liu L, Guo H, Liu J, et al. Chem. Commun., 2014, 50(67): 9485-9488. 

    44. [44]

      Zhang J, Chu R, Chen Y, et al. J. Alloy. Compd., 2019, 797: 83-91. 

    45. [45]

      Guo Y, Wang Z, Lu X, et al. Chem. Commun., 2020, 56(13): 1980-1983. 

    46. [46]

      Zhang G, Hou S, Zhang H, et al. Adv. Mater., 2015, 27(14): 2400-2405. 

    47. [47]

      Ge X, Li Z, Wang C, et al. ACS Appl. Mater. Interf., 2015, 7(48): 26633-26642. 

    48. [48]

      Wu M, Chen H, Lv L P, et al. Chem. Eng. J., 2019, 373: 985-994. 

    49. [49]

      Yin X, Zhi C, Sun W, et al. J. Mater. Chem. A, 2019, 7(13): 7800-7814. 

    50. [50]

      He Z, Wang K, Zhu S, et al. ACS Appl. Mater. Interf., 2018, 10(13): 10974-10985. 

    51. [51]

      Zhao Y, Li X, Liu J, et al. ACS Appl. Mater. Interf., 2016, 8(10): 6472-6480. 

    52. [52]

      Zhong M, Kong L, Li N, et al. Coord. Chem. Rev., 2019, 388: 172-201. 

    53. [53]

      Yin W, Li W, Wang K, et al. Electrochim. Acta, 2019, 318: 673-682. 

    54. [54]

      Xu X, Liu W, Kim Y, et al. Nano Today, 2014, 9(5): 604-630. 

    55. [55]

      Huang W, Li S, Cao X, et al. ACS Sustain. Chem. Eng., 2017, 5(6): 5039-5048. 

    56. [56]

      Jiang T, Bu F, Liu B, et al. New J. Chem., 2017, 41(12): 5121-5124. 

    57. [57]

      Xue H, Yue S, Wang J, et al. J. Electroanal. Chem., 2019, 840: 230-236. 

    58. [58]

      Shao J, Gao T, Qu Q, et al. J. Power Sources, 2016, 324: 1-7. 

    59. [59]

      Yuan D, Huang G, Yin D, et al. ACS Appl. Mater. Interf., 2017, 9(21): 18178-18186. 

    60. [60]

      Han Y, Li J, Zhang T, et al. Chem. Eur. J., 2018, 24(7): 1651-1656. 

    61. [61]

      Zhong M, He W W, Shuang W, et al. Inorg. Chem., 2018, 57(8): 4620-4628. 

    62. [62]

      Chen S, Zhou R, Chen Y, et al. Int. J. Electrochem. Sci., 2016, 11: 10522-10535.

    63. [63]

      Mandi Z, Shihua Q. Mater. Lett., 2016, 171: 18-22 

    64. [64]

      Guan B Y, Yu L, Li J, et al. Sci. Adv., 2016, 2(3): e1501554.

    65. [65]

      Zhang S, Zhang Z, Kang J, et al. Electrochim. Acta, 2019, 320: 134542. 

    66. [66]

      Song X, Chen S, Guo L, et al. Adv. Energy Mater., 2018, 8(27): 1801101. 

    67. [67]

      Yue H, Shi Z, Wang L, et al. J. Alloy. Compd., 2017, 723: 1018-1025. 

    68. [68]

      Cao Y, Lu Y, Ang E H, et al. Nanoscale, 2019, 11(32): 15112-15119. 

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    4. [4]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    5. [5]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    11. [11]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    17. [17]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    18. [18]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    19. [19]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    20. [20]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(15)
  • Abstract views(1219)
  • HTML views(349)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return