Citation: YE Dong-hong, FENG Zhi-hao, HOU Ran-ran, JIA Yu-xing, GUO Zhen-xing, KONG Ling-xue, BAI Jin, BAI Zong-qing, LI Wen. Transformation of sulfur forms during pyrolysis of mild liquefaction solid product of Hami coal[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(9): 1025-1034. shu

Transformation of sulfur forms during pyrolysis of mild liquefaction solid product of Hami coal

  • Corresponding author: BAI Zong-qing, baizq@sxicc.ac.cn
  • Received Date: 27 July 2020
    Revised Date: 25 August 2020

    Fund Project: The project was supported by Joint Foundation of Natural Science Foundation of China and Xinjiang Province U1703252Key Natural Science Foundation Project of Shanxi Province 201901D111002(ZD)The project was supported by Joint Foundation of Natural Science Foundation of China and Xinjiang Province (U1703252), Key Natural Science Foundation Project of Shanxi Province (201901D111002(ZD)) and Shanxi Province Science Foundation for Youths (201801D221089)Shanxi Province Science Foundation for Youths 201801D221089

Figures(9)

  • The sulfur-containing gases evolution and the transformation of sulfur during pyrolysis of mild liquefaction solid product (MLS) were studied in a fixed-bed reactor. Meanwhile, the effects of mineral matters on the sulfur transformation were explored. The results show that most of the sulfur remains in the char under the experimental conditions in this work. Less than 10% of the sulfur migrates into tar and sulfur-containing gases. The sulfur-containing gases generated in pyrolysis is mainly H2S. In addition, the generation rate of H2S reaches the maximum when MLS is pyrolyzed at 400 ℃. The contents of various forms of sulfur in both MLS and its pyrolysis char were determined by the modified method. The analysis shows that the decomposition and conversion of sulfide sulfur and organic sulfur are the main reactions of sulfur-containing matters during the pyrolysis process of MLS. As the pyrolysis temperature increases, the organic sulfur in MLS gradually decomposes and is converted into sulfur-containing gases. When the temperature is lower than 600 ℃, the sulfide sulfur in MLS is gradually transformed into sulfur-containing gases, organic sulfur and a small amount of pyrite sulfur. When the pyrolysis temperature is higher than 600 ℃, the alkaline minerals in MLS would absorb H2S and convert into sulfide sulfur. Consequently, the content of sulfide sulfur slowly increases. Acetic acid pickling treatment can retain most of the sulfide sulfur in MLS. After pickling, the generation rate of H2S during MLS pyrolysis increases, and the peak temperature shifts to the lower temperature. When the pyrolysis temperature is over 600 ℃ the desulfurization reaction rate of the organic sulfur and sulfide sulfur decreases. Meanwhile, the alkaline minerals in MLS can react with H2S to form metal sulfides, leading to a significant decrease in H2S generation rate.
  • 加载中
    1. [1]

      HUANG Chuan-feng, HAN Lei, WANG Meng-yan, LI Hui-hui, YANG Fan, WANG Yong-juan, WANG Ming-feng, LI Da-peng, HUO Peng-ju, WANG Jian-qiang. Research development of properties and application of coal hydrogenation liquefaction residue[J]. Mod Chem Ind, 2016,36(6):19-23.  

    2. [2]

    3. [3]

      LUO W J, LAN X Z, SONG Y H, FU J P. Research progress on utilization of coal liquefaction residue[J]. Mater Rev, 2013,27(6A):153-157.  

    4. [4]

      XU Bang, CHU Mo, ZHANG Hui-hui, WANG Fang, LIU Li-xin. Research status of direct coal liquefaction residue pyrolysis[J]. Clean Coal Technol, 2013,19(4):81-84.  

    5. [5]

      WANG Zhong-chen, DAI Xin, WEI Jiang-tao. Research progress on utilization of coal hydroliquefaction residue[J]. Coal Process Compr Util, 2019(10):44-48.  

    6. [6]

      CHANG Wei-ke, XU Jie, SUN Wei, CHEN Sheng-li, ZHANG Sheng-zhen. Research progress and prospect of sulfur migration and transformation in coal liquefaction residue[J]. Clean Coal Technol, 2017,23(3):1-6, 15.  

    7. [7]

      SHI Shi-dong. Fundamentals of Coal Hydrogenation and Liquefaction Engineering[M]. Beijing:Chemical Industry Press, 2012.

    8. [8]

      ZHANG De-xiang, RILEY J T. Investigations into analysis and desulfurization reactivity of sulfur forms in coals[J]. J Fuel Chem Technol, 1996,24(2):150-154.  

    9. [9]

      LI Wen, GUO Shu-cai. Supercritical desulfurization of coal with alcohols:Ⅲ. Variation of sulfur forms[J]. J Fuel Chem Technol, 1995,23(1):94-98.  

    10. [10]

      XU Jun-li. Co-pyrolysis characteristics of direct coal liquefaction residue with low-rank coals and their interactive mechanism[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2018.

    11. [11]

      ZHAO Li-hong, CHU Xi-jie. Catalyst affected to residue gasification reactivity of direct coal liquefaction[J]. Coal Sci Technol, 2011,39(9):125-128.  

    12. [12]

      CUI Hong. Property and reactivity of residue from coal hydroliquefaction[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2001. 

    13. [13]

      YAN J C, BAI Z Q, ZHAO H L, BAI J, LI W. Inappropriateness of the standard method in sulfur form analysis of char from coal pyrolysis[J]. Energy Fuels, 2012,26(9):5837-5842. doi: 10.1021/ef301041p

    14. [14]

      ZHANG Wen-kai. Study on the characteristics of sulfur thermal migration in liquefaction residue and four components[D]. Xi'an: Northwest University, 2015. 

    15. [15]

      LIU Ya-nan. Study on the characteristics of sulfur thermal conversion and migration in coal liquefaction residue and sulfur-containing model[D]. Xi'an: Northwest University, 2014. 

    16. [16]

      YANG Lei. Study on thermal conversion behavior of coal liquefaction residue and thermal migration characteristics of sulfur[D]. Xi'an: Northwest University, 2013. 

    17. [17]

      CHU X J, LI W, LI B Q, CHEN H K. Sulfur transfers from pyrolysis and gasification of direct liquefaction residue of Shenhua coal[J]. Fuel, 2008,87(2):211-215.  

    18. [18]

      GRYGLEWICZ G, JASIENKO S. The behavior of sulfur forms during pyrolysis of low-rank coal[J]. Fuel, 1992,71(11):1225-1229. doi: 10.1016/0016-2361(92)90047-R

    19. [19]

      FURFARI S, CYPRES R. Hydropyrolysis of a high-sulfur, high-calcite Italian Sulcis coal 2. Importance of the mineral matter on the sulfur behavior[J]. Fuel, 1982,61(5):453-459. doi: 10.1016/0016-2361(82)90071-0

    20. [20]

      CHU Xi-jie. Pyrolysis and gasification characteristic of Shenhua coal direct liquefaction residue[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2008. 

    21. [21]

      FENG Zhi-hao, XU Jun-li, HAO Pan, HOU Ran-ran, GUO Zhen-xing, BAI Jin, BAI Zong-qing, LI Wen. Physicochemical properties and pyrolysis characteristics of mild liquefaction solid product of Hami coal[J]. J Fuel Chem Technol, 2018,46(10):12-19.  

    22. [22]

      FENG Z H, BAI Z Q, ZHENG H Y, GUO Z X, KONG L X, BAI J, LI W. Towards understanding the interactions between mild liquefaction solid product and Hami sub-bituminous coal during their co-pyrolysis[J]. J Anal Appl Pyrolysis, 2020,145104742. doi: 10.1016/j.jaap.2019.104742

    23. [23]

      FENG Z H, BAI Z Q, ZHENG H Y, ZHENG K W, HOU R R, GUO Z X, KONG L X, BAI J, LI W. Study on the pyrolysis characteristic of mild liquefaction solid product of Hami coal and CO2 gasification of its char[J]. Fuel, 2019,253:1034-1041. doi: 10.1016/j.fuel.2019.05.084

    24. [24]

      SONEDA Y, MAKINO M, YASUDA H, YAMADA O, KOBAYASHI M, KAIHO M. The effect of acid treatment of coal on H2S evolution during pyrolysis in hydrogen[J]. Fuel, 1998,77(9/10):907-911.  

    25. [25]

      CALKINS , WILLIAM H. Investigation of organic sulfur-containing structures in coal by flash pyrolysis experiments[J]. Energy Fuels, 1987,1(1):59-64.  

    26. [26]

      KHAN M R. Prediction of sulfur distribution in products during low-temperature coal pyrolysis and gasification[J]. Fuel, 1989,68(11):1439-1449. doi: 10.1016/0016-2361(89)90043-4

    27. [27]

      YAN Jin-ding. Sulfur transformation during pyrolysis of sulfur model compounds under coal-like environment[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2005. 

    28. [28]

      DING Kang-le, LI Shu-yuan, YUE Chang-tao, ZHONG Ning-ning. A simulation on the formation of organic sulfur compounds in petroleum from thermochemical sulfate reduction[J]. J Fuel Chem Technol, 2008,36(1):48-54.  

    29. [29]

      ATTAR A. Chemistry, thermodynamics and kinetics of reactions of sulphur in coal-gas reactions:A review[J]. Fuel, 1978,57(4):201-212.  

    30. [30]

      TOUCHY A S, SIDDIKI S M A H, ONODERA W, KONA K, SHIMIZU K. Hydrodeoxygenation of sulfoxides to sulfides by a Pt and MoOx co-loaded TiO2 catalyst[J]. Green Chem, 2016,18(8):2554-2560. doi: 10.1039/C5GC02806J

    31. [31]

      MITSUDOME T, TAKAHASHI Y, MIZUGAKI T, JITSUKAWA K, KANEDA K. Hydrogenation of sulfoxides to sulfides under mild conditions using ruthenium nanoparticle catalysts[J]. Angew Chem Int Ed, 2014,53(32):8348-8351. doi: 10.1002/anie.201403425

    32. [32]

      DU B, ZHANG W. Computational study on the mechanism and kinetics for reaction of CH3SH+H with water vapor[J]. Comput Theor Chem, 2017.  

    33. [33]

      XIONG Nan-an, DONG Bin, DAI Xiao-Hu. Determination of sulfur amino acids in sludge by RP-HPLC[J]. China Environ Sci, 2017,37(12):4614-4619.  

    34. [34]

      IULIA V, ARABELA E U, TEODOR M, MARGARETA O, TATIANA D P, MARIA S, ILIE V. Development and validation of an RP-HPLC method for methionine, cystine and lysine separation and determination in corn samples[J]. Revista de Chimie, 2013,64(7):673-679.  

    35. [35]

      WANG Y, KANG X J, GE W H, SUN X Z, PENG J. Simple, rapid, and accurate RP-HPLC method for determination of cystine in human urine after derivatization with dansyl chloride[J]. Chromatographia, 2007,65(9/10):527-532.  

    36. [36]

      BARKER J, ANDO D J. Mass Spectrometry:Analytical Chemistry by Open Learning, 2nd Edition[M]. Hoboken:John Wiley, 1996.

  • 加载中
    1. [1]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    2. [2]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    3. [3]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    4. [4]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    5. [5]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    6. [6]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    7. [7]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    8. [8]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    9. [9]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    10. [10]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    11. [11]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    12. [12]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    13. [13]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    14. [14]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    15. [15]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    17. [17]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    18. [18]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    19. [19]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    20. [20]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

Metrics
  • PDF Downloads(4)
  • Abstract views(1180)
  • HTML views(262)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return