Citation: JI Xue-wei, GE Qing-jie, SUN Jian. Construction of synergistic and efficient iron-based catalysts for hydrogenation of CO2 to higher hydrocarbons[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(4): 438-445. shu

Construction of synergistic and efficient iron-based catalysts for hydrogenation of CO2 to higher hydrocarbons

  • Corresponding author: SUN Jian, sunj@dicp.ac.cn
  • Received Date: 13 November 2018
    Revised Date: 16 February 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (91745107)National Natural Science Foundation of China 91745107

Figures(6)

  • A series of fused iron (FI) catalysts promoted with biomass ash were prepared by physical mixing method and characterized by X-ray diffraction, transmission electron microscopy and Mossbauer spectroscopy. The catalytic performance of CO2 hydrogenation to higher hydrocarbons was evaluated in a fixed bed reactor. The results show that compared with the catalyst without biomass ash (B-ash), the fused iron catalysts promoted with biomass ash have smaller particle size and narrower size distribution, and the four phases of Fe3O4, Fe5C2, Fe3C as well as α-Fe coexist in synergy. Thus, the tandem reaction of reverse water gas shift (RWGS) and C-C coupling proceed efficiently, and the selectivity of higher hydrocarbons is significantly improved while methane formation is effectively suppressed. Among the products, C4-18 hydrocarbons are dominant. The C4-18 hydrocarbons' selectivity in all hydrocarbons reaches 73.9% at the conditions of 300℃, 1.0 MPa, 4800 h-1, H2/CO2=3.0 as well as the additive amount of the promoter is 5% (mass ratio).
  • 加载中
    1. [1]

      DATTAS J, KHUMNOONC , LEEZ H, MOON W K, DOCAO S, NGUYEN T H, HWANG I C, MOON D, OLEYNIKOV P, TERASAKI O, YOON K B. CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate[J]. Science, 2015,350(6258):302-306. doi: 10.1126/science.aab1680

    2. [2]

      WANG W, WANG S P, MA X B, GONG J L. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chem Soc Rev, 2011,40(7):3703-3727. doi: 10.1039/c1cs15008a

    3. [3]

      DORNER R W, HARDY D R, WILLIAMS F W, WILLAUER H D. Heterogeneous catalytic CO2 conversion to value-added hydrocarbons[J]. Energy Environ Sci, 2010,3(7):884-890. doi: 10.1039/c001514h

    4. [4]

      ARAKAWA H, ARESTA M, ARMOR J N, BARTEAU M A, BECKMAN E J, BELL A T, BERCAW J E, CREUTZ C, DINJUS E, DIXON D A, DOMEN K, DUBOIS D L, ECKERT J, FUJITA E, GIBSON D H, GODDARD W A, GOODMAN D W, KELLER J, KUBAS G J, KUNG H H, LYONS J E, MANZER L E, MARKS T J, MOROKUMA K, NICHOLAS K M, PERIANA R, QUE L, ROSTRUP-NIELSON J, SACHTLER W M H, SCHMIDT L D, SEN A, SOMORJAI G A, STAIR P C, STULTS B R, TUMAS W. Catalysis research of relevance to carbon management progress, challenges, and opportunities[J]. Chem Rev, 2001,101(4):953-996. doi: 10.1021/cr000018s

    5. [5]

      DIMITRIOU I, GARCÍA-GUTIÉRREZ P, ELDER R H, CUÉLLAR-FRANCA R M, AZAPAGIC A, ALLEN R W K. Carbon dioxide utilisation for production of transport fuels:Process and economic analysis[J]. Energy Environ Sci, 2015,8(6):1775-1789. doi: 10.1039/C4EE04117H

    6. [6]

      ROY S C, VARGHESE O K, PAULOSE M, GRIMES C A. Toward solar fuels:Photocatalytic conversion of carbon dioxide to hydrocarbons[J]. ACS Nano, 2010,4(3):1259-1278. doi: 10.1021/nn9015423

    7. [7]

      LI W H, WANG H Z, JIANG X, ZHU J, LIU Z M, GUO X W, SONG C S. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts[J]. Rsc Adv, 2018,8(14):7651-7669. doi: 10.1039/C7RA13546G

    8. [8]

      CENTI G, QUADRELLI E A, PERATHONER S. Catalysis for CO2 conversion:A key technology for rapid introduction of renewable energy in the value chain of chemical industries[J]. Energy Environ Sci, 2013,6(6):1711-1731. doi: 10.1039/c3ee00056g

    9. [9]

      YANG H Y, ZHANG C, GAO P, WANG H, LI X P, ZHONG L S, WEI W, SUN Y H. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J]. Catal Sci Technol, 2017,7(20):4580-4598. doi: 10.1039/C7CY01403A

    10. [10]

      WEI J, GE Q J, YAO R W, WEN Z Y, FANG C Y, GUO L S, XU H Y, SUN J. Directly converting CO2 into a gasoline fuel[J]. Nat Commun, 2017(8)15174.  

    11. [11]

      GAO P, LI S G, BU X N, DANG S S, LIU Z Y, WANG H, ZHONG L S, QIU M H, YANG C G, CAI J, WEI W, SUN Y H. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nat Chem, 2017,9(10):1019-1024. doi: 10.1038/nchem.2794

    12. [12]

      LIU J H, ZHANG A F, JIANG X, LIU M, SUN Y W, SONG C S, GUO X W. Selective CO2 hydrogenation to hydrocarbons on Cu-promoted Fe-based catalysts:Dependence on Cu-Fe interaction[J]. ACS Sustainable Chem Eng, 2018,6(8):10182-10190. doi: 10.1021/acssuschemeng.8b01491

    13. [13]

      NI Y M, CHEN Z Y, FU Y, LIU Y, ZHU W L, LIU Z M. Selective conversion of CO2 and H2 into aromatics[J]. Nat Commun, 2018,9(1)3457. doi: 10.1038/s41467-018-05880-4

    14. [14]

      NIEMELÄ , NOKKOSMÄKI M. Activation of carbon dioxide on Fe-catalysts[J]. Catal Today, 2005,100(3/4):269-274.  

    15. [15]

      GUO L S, SUN J, JI X W, WEN Z Y, YAO R W, XU H Y, GE Q J. Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts[J]. Commun Chem, 2018,1(1).

    16. [16]

      ZHANG J L, LU S P, SU X J, FAN S B, MA Q X, ZHAO T S. Selective formation of light olefins from CO2hydrogenation over Fe-Zn-K catalysts[J]. J CO2 Util, 2015,12:95-100. doi: 10.1016/j.jcou.2015.05.004

    17. [17]

      YOU Z Y, DENG W P, ZHANG Q H, WANG Y. Hydrogenation of carbon dioxide to light olefins over non-supported iron catalyst[J]. Chin J Catal, 2013,34(5):956-963. doi: 10.1016/S1872-2067(12)60559-2

    18. [18]

      SUN B, XU K, LUAN N, QIAO M H, FRANKLIN (FENG) T. Preparation and catalysis of carbon-supported iron catalysts for Fischer-Tropsch synthesis[J]. ChemCatChem, 2012,4(10):1498-1511. doi: 10.1002/cctc.v4.10

    19. [19]

      YAN S R, JUN K W, HONG J S, CHOI M J, LEE K W. Promotion effect of Fe-Cu catalyst for the hydrogenation of CO2 and application to slurry reactor[J]. Appl Catal A:Gen, 2000,194/195:63-70. doi: 10.1016/S0926-860X(99)00354-3

    20. [20]

      GUO L S, SUN J, WEI J, WEN Z Y, XU H Y, GE Q J. Fischer-Tropsch synthesis over iron catalysts with corncob-derived promoters[J]. Energy Chem, 2017,26(4):632-638. doi: 10.1016/j.jechem.2017.03.017

    21. [21]

      SUN J, XU H Y, LIU G G, ZHU P F, FAN R G, YONEYAMA Y, TSUBAKI N. Green synthesis of rice bran microsphere catalysts containing natural biopromoters[J]. ChemCatChem, 2015,7(11):1642-1645. doi: 10.1002/cctc.v7.11

    22. [22]

      LIAO Xiao-yuan. Theoretical Study of F-T Reaction Mechanism on Fe3C surfaces[D]. Taiyuan: Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences, 2007. 

    23. [23]

      CHEN Yun-hong. Quantum chemical study of CO adsorption on the Fe(111) and Fe(100) surfaces[D]. Guangzhou: Jinan University, 2005. 

    24. [24]

      GNANAMANI M K, HAMDEH H H, JACOBS G, SHAFER W D, SPARKS D E, KEOGH R A, DAVIS B H. Fischer-Tropsch synthesis:Activity and selectivity of chi-Fe5C2 and circle minus-Fe3C carbides[J]. Abstracts of Papers of the American Chemical Society, 2014,248.

    25. [25]

      WEI Jian, MA Xian-gang, FANG Chuan-yan, GE Qing-jie, XU Heng-yong. Iron-silica nanocomposites as a catalyst for the selective conversion of syngas to light olefins[J]. J Fuel Chem Technol, 2014,42(7):827-832.  

    26. [26]

      POUR A N, SHAHRI S M K, BOZORGZADEH H R, ZAMANI Y, TAVASOLI A, MARVAST M A. Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer-Tropsch synthesis[J]. Appl Catal A:Gen, 2008,348:201-208. doi: 10.1016/j.apcata.2008.06.045

    27. [27]

      SATTHAWONG R, KOIZUMI N, SONG C S, PRASASSARAKICH P. Light olefin synthesis from CO2 hydrogenation over K-promoted Fe-Co bimetallic catalysts[J]. Catal Today, 2015,251:34-40. doi: 10.1016/j.cattod.2015.01.011

    28. [28]

      GALVIS H M T, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012,335:835-838. doi: 10.1126/science.1215614

    29. [29]

      YANG Y, XIANG H W, XU Y Y, BAI L, LI Y W. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Appl Catal A:Gen, 2004,266(2):181-194. doi: 10.1016/j.apcata.2004.02.018

    30. [30]

      SATTHAWONG R, KOIZUMI N, SONG C S, PRASASSARAKICH P. Light olefin synthesis from CO2hydrogenation over K-promoted Fe-Co bimetallic catalysts[J]. Catal Today, 2015,251:34-40. doi: 10.1016/j.cattod.2015.01.011

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    4. [4]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    7. [7]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    10. [10]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(6)
  • Abstract views(665)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return