Citation: ZHAO Ning, XIAO Yong, LU Huai-qian, HOU Bo, LI De-bao, JIA Li-tao. Effect of Ce/Zr molar ratio on the catalytic performance of Ru/CexZr1-xO2 in the wet air oxidation of phenol[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(8): 1018-1024. shu

Effect of Ce/Zr molar ratio on the catalytic performance of Ru/CexZr1-xO2 in the wet air oxidation of phenol

Figures(6)

  • A series of CexZr1-xO2 catalysts with different Ce/Zr molar ratios were prepared by sol-gel method and characterized by X-ray diffraction (XRD), nitrogen sorption, Raman spectra, oxygen storage capacity (OSC), thermogravimetry (TG) and pyridine adsorption infrared (Py-FTIR) spectra; the performance of CexZr1-xO2 in catalytic wet air oxidation (CWAO) of phenol was investigated. The results demonstrate that CexZr1-xO2 solid solution is formed by doping ZrO2 in CeO2 and the OSC value of CexZr1-xO2 increases with an increase in the content of ZrO2. In comparison with pure CeO2, CexZr1-xO2 solid solution has more Lewis acid sites. The catalytic activity of CexZr1-xO2 is related to both OSC and surface acidity; the Lewis acid sites are favorable for the complete oxidation of phenol, whereas high OSC may promote the carbonaceous deposition that leads to catalyst deactivation. The Ru/Ce0.75Zr0.25O2 catalyst exhibits high activity in phenol oxidation; after reaction for 5 h at 160℃ and 2 MPa O2, phenol conversion and total organic carbon (TOC) rate reach 100% and 99%, respectively.
  • 加载中
    1. [1]

      LEVEC J, PINTAR A. Catalytic wet-air oxidation processes:A review[J]. Catal Today, 2007,124(3/4):172-184.  

    2. [2]

      IMAMURA S. Catalytic and noncatalytic wet oxidation[J]. Ind Eng Chem Res, 1999,38(5):1743-1753. doi: 10.1021/ie980576l

    3. [3]

      BUSCA G, BERARDINELLI S, RESINI C, ARRIGHI L. Technologies for the removal of phenol from fluid streams:A short review of recent developments[J]. J Hazard Mater, 2008,160(2/3):265-288.  

    4. [4]

      CYBULSKI A. Catalytic wet air oxidation:Are monolithic catalysts and reactors feasible?[J]. Ind Eng Chem Res, 2007,46(12):4007-4033. doi: 10.1021/ie060906z

    5. [5]

      BHARGAVA S K, TARDIO J, PRASAD J, FOGER K, AKOLEKAR D B, GROCOTT S C. Wet oxidation and catalytic wet oxidation[J]. Ind Eng Chem Res, 2006,45(4):1221-1258. doi: 10.1021/ie051059n

    6. [6]

      BARBIER-JR J, DELANOE F, JABOUILLE F, DUPREZ D, BLANCHARD G, ISNARD P. Total oxidation of acetic acid in aqueous solutions over noble metal catalysts[J]. J Catal, 1998,177(2):378-385. doi: 10.1006/jcat.1998.2113

    7. [7]

      OLIVIERO L, BARBIER-JR J, LABRUQUERE S, DUPREZ D. Role of the metal-support interface in the total oxidation of carboxylic acids over Ru/CeO2 catalysts[J]. Catal Lett, 1999,60(1/2):15-19. doi: 10.1023/A:1019026100843

    8. [8]

      OLIVIERO L, BARBIER-JR J, DUPREZ D, GUERRERO-RUIZ A, BACHILLER-BAEZA B, RODRIGUEZ-RAMOS I. Catalytic wet air oxidation of phenol and acrylic acid over Ru/C and Ru-CeO2/C catalysts[J]. Appl Catal B:Environ, 2000,25(4):267-275. doi: 10.1016/S0926-3373(99)00141-1

    9. [9]

      TROVARELLI A. Catalytic properties of ceria and CeO2-containing materials[J]. Catal Rev, 1996,38(4):439-520. doi: 10.1080/01614949608006464

    10. [10]

      KASPAR J, FORNASIERO P, GRAZIANI M. Use of CeO2-based oxides in the three-way catalysis[J]. Catal Today, 1999,50(2):285-298. doi: 10.1016/S0920-5861(98)00510-0

    11. [11]

      MONTE R D, KAŠPAR J. Nanostructured CeO2-ZrO2 mixed oxides[J]. J Mater Chem, 2005,15(6):633-648. doi: 10.1039/B414244F

    12. [12]

      YUAN F G. Synthesis of cerium-zirconium solid solution and their catalytic performance for carbon monoxide oxidation[D]. Yunnan: Yunnan University, 2015.

    13. [13]

      LI N, DESCORME C, BESSON M. Catalytic wet air oxidation of 2-chlorophenol over Ru loaded CexZr1-xO2 solid solutions[J]. Appl Catal B:Environ, 2007,76(1/2):92-100.  

    14. [14]

      KEAV S, DE LOS MONTEROS A E, BARBIER J, DUPREZ D. Wet air oxidation of phenol over Pt and Ru catalysts supported on cerium-based oxides:Resistance to fouling and kinetic modelling[J]. Appl Catal B:Environ, 2014,150/151:402-410. doi: 10.1016/j.apcatb.2013.12.028

    15. [15]

      LAFAYE G, BARBIER J, DUPREZ D. Impact of cerium-based support oxides in catalytic wet air oxidation:Conflicting role of redox and acid-base properties[J]. Catal Today, 2015,253:89-98. doi: 10.1016/j.cattod.2015.01.037

    16. [16]

      NOUSIR S, KEAV S, BARBIER J, BENSITEL M, BRAHMI R, DUPREZ D. Deactivation phenomena during catalytic wet air oxidation (CWAO) of phenol over platinum catalysts supported on ceria and ceria-zirconia mixed oxides[J]. Appl Catal B:Environ, 2008,84(3/4):723-731.  

    17. [17]

      GANDHE A R, FERNANDES J B, VARMA S, GUPTA N M. TiO2:As a versatile catalyst for the ortho-selective methylation of phenol[J]. J Mol Catal A:Chem, 2005,238(1/2):63-71.  

    18. [18]

      CHEN Y, DOU H, YANG M, GAO X, WU M, CUI G, SUN C. Study of catalytic wet air oxidation to be used in the pretreatmrnt of phenol wastewater[J]. Ind Water Treat, 2002,22(6):19-22.  

    19. [19]

      ROSSIGNOL S, GERARD F, DUPREZ D. Effect of the preparation method on the properties of zirconia-ceria materials[J]. J Mater Chem, 1999,9(7):1615-1620. doi: 10.1039/a900536f

    20. [20]

      WANG L, WANG S, ZHANG L. Effect of Ce-Zr ratio on properties of ceria-zirconia solid solution as oxygen storage material[J]. Chin J Rare Metals, 2011,35(2):276-280.

    21. [21]

      HOMSI D, AOUAD S, EL NAKAT J, EL KHOURY B, OBEID P, ABI-AAD E, ABOUKAÏS A. Carbon black and propylene oxidation over Ru/CexZr1-xO2 catalysts[J]. Catal Commun, 2011,12(8):776-780. doi: 10.1016/j.catcom.2011.01.014

    22. [22]

      ROSSIGNOL S, MADIER Y, DUPREZ D. Preparation of zirconia-ceria materials by soft chemistry[J]. Catal Today, 1999,50(2):261-270. doi: 10.1016/S0920-5861(98)00508-2

    23. [23]

      WU H. Combustion of toluene catalyzed by ceria-zirconia solid solutions[D]. Shandong: China University of Petroleum, 2015.

    24. [24]

      HUANG H, DAI Q, WANG X. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Appl Catal B:Environ, 2014,158/159:96-105. doi: 10.1016/j.apcatb.2014.01.062

    25. [25]

      MAR S Y, CHEN C S, HUANG Y S, TIONG K K. Characterization of RuO2 thin films by Raman spectroscopy[J]. Appl Surf Sci, 1995,90(4):497-504. doi: 10.1016/0169-4332(95)00177-8

    26. [26]

      WANG F. Modulation of support microstructure for Ru-based catalysts and their catalytic performance toward CO2 methanation[D]. Beijing: Beijing University of Chemical Technology, 2016.

    27. [27]

      ZHAN Y, CAI G, XIAO Y, ZHENG Q, WEI K. Correlation of storage capacity and properties for Ce-Zr solid solution[J]. Spectrosc Spect Anal, 2007,12(11):2266-2269.

    28. [28]

      MONTEROS A E D L, LAFAYE G, CERVANTES A, DEL ANGEL G, BARBIER JR J, TORRES G. Catalytic wet air oxidation of phenol over metal catalyst (Ru, Pt) supported on TiO2-CeO2 oxides[J]. Catal Today, 2015,258:564-569. doi: 10.1016/j.cattod.2015.01.009

    29. [29]

      CUTRUFELLO M G, FERINO I, MONACI R, ROMBI E, SOLINAS V. Acid-base properties of zirconium, cerium and lanthanum oxides by calorimetric and catalytic investigation[J]. Top Catal, 2002,19(3/4):225-239. doi: 10.1023/A:1015376409863

    30. [30]

      ALNAIZY R, AKGERMAN A. Advanced oxidation of phenolic compounds[J]. Adv Environ Res, 2000,4:233-244. doi: 10.1016/S1093-0191(00)00024-1

    31. [31]

      MASENDE Z P G, KUSTER B F M, PTASINSKI K J, JANSSEN F J J G, KATIMA J H Y, SCHOUTEN J C. Platinum catalysed wet oxidation of phenol in a stirred slurry reactor:The role of oxygen and phenol loads on reaction pathways[J]. Catal Today, 2003,79/80:357-370. doi: 10.1016/S0920-5861(03)00064-6

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    4. [4]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    5. [5]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    6. [6]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    7. [7]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    8. [8]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    18. [18]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    19. [19]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    20. [20]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

Metrics
  • PDF Downloads(6)
  • Abstract views(579)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return