Citation: SUN Jiao, REN Guo-qing, HUANG Yu-hui, CHEN Xiao-rong, MEI Hua. Effect of calcination temperature on the catalytic performance of CuMgAl catalysts for furfural gas phase selective hydrogenation to furfuryl alcohol[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(1): 43-47. shu

Effect of calcination temperature on the catalytic performance of CuMgAl catalysts for furfural gas phase selective hydrogenation to furfuryl alcohol

  • Corresponding author: CHEN Xiao-rong, chenxr@126.com
  • Received Date: 27 September 2016
    Revised Date: 18 November 2016

Figures(7)

  • The CuMgAl hydrotalcite-type precursors were prepared by fractional precipitation process with the mass ratio of m(CuO):m(MgO):m(Al2O3)=25:26:49. CuMgAl-t catalysts were calcined at various temperatures. CuMgAl-t catalysts were characterized by BET, TGA, XRD and H2-TPR and CO2-TPD. The catalytic performance of CuMgAl-t catalysts for the gas phase hydrogenation of furfural to furfuryl alcohol was investigated in a fixed bed reactor. The results showed that the calcination temperatures had effect on catalysts activity, stability and product selectivity. The lower temperature calcined catalysts with reduction can obtain more active center and the higher temperature calcined catalysts had more alkaline sites on the surface of catalysts. CuMgAl catalyst calcined at 450℃ had suitable surface active centers and alkaline sites. Under the reaction conditions of atmospheric pressure, reaction temperature of 180℃, molar ratio of hydrogen to furfural of 5 and volume space velocity of 0.3 h-1, the furfural conversion of 98.64% and furfuryl alcohol selectivity of 97.66% were reached over the CuMgAl-450.
  • 加载中
    1. [1]

      YAN K, WU G, LAFLEUR T, JARVIS C. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemical[J]. Renew Sust Energy Rev, 2014,38(5):663-676.

    2. [2]

      JEAN-PAUL L, EVERT V, JEROEN V, RICHARD P. Furfural-a promising platform for lignocellulosic biofuels[J]. Chem Sus Chem, 2012,5(1):150-166. doi: 10.1002/cssc.201100648

    3. [3]

      MANDALIK A, LI Q, SATO T K, RUNGE T. Integrated biorefinery model based on production of furans using open-ended high yield processes[J]. Green Chem, 2014,16(5):2480-2489. doi: 10.1039/C3GC42424C

    4. [4]

      NAKAGAWA Y, TAMURA M, TOMISHIGE K. Catalytic reduction of biomass-derived furanic compounds with hydrogen[J]. ACS Catal, 2013,3(12):2655-2668. doi: 10.1021/cs400616p

    5. [5]

      HUANG Yu-hui, REN Guo-qing, SUN Jiao, WANG Chong-qing, CHEN Xiao-rong, MEI Hua. Effect of precipitant on the performance of CuZnAl catalysts in the gas phase selective hydrogenation of furfural to furfuryl alcohol[J]. J Fuel Chem Technol, 2016,44(6):726-731.  

    6. [6]

      SEO G, CHON H. Chemlnform abstract:Hydrogenation of furfural over copper-containing catalysts[J]. J Catal, 1981,67(2):424-429. doi: 10.1016/0021-9517(81)90302-X

    7. [7]

      YAN K, CHEN A. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu-Cr catalyst[J]. Energy, 2013,58(1):357-363.

    8. [8]

      XU C, ZHENG L, LIU J, HUANG Z. Furfural hydrogenation on nickel-promoted cu-containing catalysts prepared from hydrotalcite-like precursors[J]. Chin J Chem, 2011,29(4):691-697. doi: 10.1002/cjoc.v29.4

    9. [9]

      FORGIONNY A, FIERRO J L G, MONDRAGON F, MORENO A. Effect of Mg/Al ratio on catalytic behavior of Fischer-Tropsch cobalt-based catalysts obtained from hydrotalcites precursors[J]. Top Catal, 2016,59(2/4):230-240.

    10. [10]

      ZHOU M, ZENG Z, ZHU H, XIAO G, XIAO R. Aqueous-phase catalytic hydrogenation of furfural to cyclopentanol over Cu-Mg-Al hydrotalcites derived catalysts:Model reaction for upgrading of bio-oil[J]. J Energy Chem, 2014,23(1):91-96. doi: 10.1016/S2095-4956(14)60109-1

    11. [11]

      DEBECKER D P, GAIGNEAUX E M, BUSCA G. Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis[J]. Chemistry, 2009,15(16):3920-3935. doi: 10.1002/chem.v15:16

    12. [12]

      SHEN Yan-ming, YANG Jing, TANG Yang-jun, ZHANG Hui, WANG Lei, LIU Chang-hou, ZHANG Zhen-xiang. Preparation and characterization of CuMgAl hydrotalcite-like compounds[J]. J Chin Ceram Soc, 2009,37(2):285-290.  

    13. [13]

      MELIAN-CABRERA I, GRANADOS M L, FIERRO J L G. Thermal decomposition of a hydrotalcite-containing Cu-Zn-Al precursor:Thermal methods combined with an in situ DRIFT study[J]. Phys Chem Chem Phys, 2002,4(13):3122-3127. doi: 10.1039/b201996e

    14. [14]

      KANNAN S, RIVES V, KNOZINGER H. High-temperature transformations of Cu-rich hydrotalcites[J]. J Solid State Chem, 2004,177(1):319-331. doi: 10.1016/j.jssc.2003.08.023

    15. [15]

      CHEN T H, FAN M D, QING C S, XU H F, SUN J, CHEN G. Structural evolution of heating treatment of Mg/Al LDH and preparation of mineral mesoporous materials[J]. Acta Petrol Mineral, 2005,24(6):521-525.

    16. [16]

      KANNAN S, DUBEY A, KNOZINGER H. Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol[J]. J Catal, 2005,231(2):381-392. doi: 10.1016/j.jcat.2005.01.032

    17. [17]

      SHEN Yan-ming. Preparation of hydrotalcite-like compounds containing Pd, Cu, Ni, Zr and their catalytic performances[D]. Dalian:Dalian University of Technology, 2009.

  • 加载中
    1. [1]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    6. [6]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    7. [7]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    8. [8]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    9. [9]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    10. [10]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    14. [14]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    15. [15]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    16. [16]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    17. [17]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    20. [20]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

Metrics
  • PDF Downloads(1)
  • Abstract views(1914)
  • HTML views(783)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return