Citation: Sun Zengsen, Shen Cailong, Li Min, Zhang Xiangxiang, Yang Yu, Liu Chang. Research Progress in the Thermodynamic Analysis of Photosynthesis[J]. Chemistry, ;2017, 80(6): 517-523. shu

Research Progress in the Thermodynamic Analysis of Photosynthesis

  • Corresponding author: Liu Chang, change94@qq.com
  • Received Date: 22 November 2016
    Accepted Date: 3 January 2017

Figures(5)

  • The thermodynamic analysis of photosynthesis efficiency is critical to understand the photosynthesis mechanism, and also an important approach to achieve artificial photosynthesis with high efficiency. In this review, research progresses in the thermodynamic energy balance, entropy and exergy analysis of photosynthesis processes are discussed with particular focus on the models and development of exergy efficiency calculations. At the same time, the latest progress of artificial photosynthesis is also discussed in this paper.
  • 加载中
    1. [1]

      C Zhang, C Chen, H Dong et al. Science, 2015, 348:690~693. 

    2. [2]

      X Li, J Wen, J Low et al. Sci. China Mater., 2014, 57(1):1~31. 

    3. [3]

      M R Singh, A T Bell. Energy Environ. Sci., 2015, 9(1):193~199.

    4. [4]

    5. [5]

    6. [6]

      R Petela. Solar Energy, 2008, 82(4):311~328. 

    7. [7]

      S Lems. Int. J. Exergy, 2010, 7(3):333~351. 

    8. [8]

    9. [9]

    10. [10]

      D Mauzerall. Photosynth. Res., 2013, 116(2):363~366.

    11. [11]

      W Qi. Acc. Chem. Res., 2016, 49(9):1587~1595. 

    12. [12]

    13. [13]

      X G Zhu, S P Long, D R Ort. Curr. Opin. Biotech., 2008, 19(2):153~159. 

    14. [14]

      R Kebeish, M Niessen, K Thiruveedhi et al. Nature Biotechnol., 2007, 25(5):593~599. 

    15. [15]

      J Lieman-Hurwitz, S Rachmilevitch, R Mittler et al. Plant Biotech. J., 2003, 1(1):43~50. 

    16. [16]

      G D Price, M R Badger, S V Caemmerer. Plant Physiol., 2010, 155(1):20~26.

    17. [17]

      A Z Kiss, A P Ruban. J. Biol. Chem., 2008, 283(7):3972~3978. 

    18. [18]

      R C Jennings, E Engelmann, F Garlaschi et al. Biochim. Biophys. Acta, 2005, 1709(3):251~255. 

    19. [19]

      R S Knox, W W Parson. Biochim. Biophys. Acta, 2007, 1767(10):1189~1193. 

    20. [20]

      G M Wang, E M Sevick, E Mittag et al. Phys. Rev. Lett., 2002, 89(5):716~722.

    21. [21]

      C Bustamante, J Liphardt, F Ritort. CR Phys., 2005, 58(7):43~48.

    22. [22]

      J Lavergne. Biochim. Biophys. Acta, 2006, 1757(11):1453~1459. 

    23. [23]

      R C Jennings, A P Casazza, E Belgio et al. Biochim. Biophys. Acta-Bioenerg., 2006, 1757(11):1460~1462. 

    24. [24]

      R S Knox, W W Parson. Biochim. Biophys. Acta-Bioenerg., 2007, 1767(10):1198~1199. 

    25. [25]

      R C Jennings, E Belgio, A P Casazza et al. Biochim. Biophys. Acta, 2007, 1767(1767):1194~1197.

    26. [26]

      S P Mielke, N Y Kiang, R E Blankenship et al. Biochim. Biophys. Acta, 2011, 1807(9):1231~1236. 

    27. [27]

      E Albarrán-Zavala, F Angulobrown. Entropy, 2007, 9(4):152~168. 

    28. [28]

      H K Joseph. Brit. J. Appl. Phys., 1951, 2(7):183. 

    29. [29]

      I Asimov. Photosynthesis. New York:Basic Books, Inc., 1968.

    30. [30]

      J A Bassham, B B Buchanan. Photosynthesis. 1982, 2:141~189.

    31. [31]

      A L Lehninger. Bioenergetics:the molecular basis of biological energy transformations. Menlo Par.:WA Benjamin, 1971.

    32. [32]

      R K Chain, D I Arnon. PNAS, 1977, 74(8):3377~3381. 

    33. [33]

      J R Bolton, D O Hall. Photochem. Photobiol., 1991, 53(4):545~548. 

    34. [34]

      H Miyashita, H Ikemoto, N Kurano et al. Nature, 1996, 383(6599):402. 

    35. [35]

      M Chen, H Scheer. Science, 2010, 329(5997):1318~1319. 

    36. [36]

      M Chen, R E Blankenship. Trends Plant Sci., 2011, 16(8):427~431. 

    37. [37]

      W Wang, H Wang, Q Zhu et al. Angew. Chem., 2016, 128(32):9375~9379. 

    38. [38]

      C S Silva, W D Seider, N Lior. Chem. Eng. Sci., 2015, 130:151~171. 

    39. [39]

      S Lems. Int. J. Exergy, 2007, 4(4):339~356. 

    40. [40]

    41. [41]

      D G Nicholls, S J Ferguson. Bioenergetics 3. San Diego, Calif.:Academic Press, 2002.

    42. [42]

      R H Wijffels, M J Barbosa. Science, 2010, 329(5993):796~799. 

    43. [43]

      K K Sakimoto, A B Wong, P Yang. Science, 2016, 351(6268):74~77. 

    44. [44]

      E Sorgüven, M Özilgen. Energy, 2013, 58(9):679~687.

    45. [45]

      C Liu, B C Colón, M Ziesack et al. Science, 2016, 352(6290):1210~1213. 

    46. [46]

      J Yang, J K Cooper, F M Toma et al. Nat. Mater., 2017,16:335~341.

    47. [47]

      Y Umena, K Kawakami, J R Shen et al. Nature, 2011, 473(7345):55~60. 

  • 加载中
    1. [1]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    2. [2]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    3. [3]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    4. [4]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    5. [5]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    6. [6]

      Yali Yuan Jinfang Nie Jianping Li Wenying Jin Lin Li . 具有鲜明地方和专业特色的分析化学课程思政体系构建. University Chemistry, 2025, 40(8): 18-24. doi: 10.12461/PKU.DXHX202410007

    7. [7]

      Jian He Dinglin Zhang Liping Wu Ying Bao Xiaochao Yang . 知识网络构建策略在有机化学教学中的应用及效果分析. University Chemistry, 2025, 40(8): 66-71. doi: 10.12461/PKU.DXHX202410092

    8. [8]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    9. [9]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    10. [10]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    11. [11]

      Liqiang Huang Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074

    12. [12]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    13. [13]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    14. [14]

      Qingcui Yang Wen Liu Li Cao Chen Tang Bing Xu Jie Zhao . For Entropy Hurts: Life Thrives on Negative Entropy. University Chemistry, 2024, 39(9): 151-156. doi: 10.12461/PKU.DXHX202402029

    15. [15]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    16. [16]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    17. [17]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    18. [18]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    19. [19]

      Yujuan Chen Feiyan Yi . 中美通识教育课程的对比分析. University Chemistry, 2025, 40(6): 54-63. doi: 10.12461/PKU.DXHX202408046

    20. [20]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

Metrics
  • PDF Downloads(21)
  • Abstract views(2963)
  • HTML views(1167)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return