Citation: YIN Si-yuan, TIAN Chun-yan, LI Yan-mei, GAO Chuan-rui, ZHANG Nian-ze, CHOU Peng-tao, YI Wei-ming, LI Zhi-he. Effect of aqueous phase recirculation on characteristics of bio-crude oil formation during hydrothermal liquefaction of corn stalk[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(3): 275-285. shu

Effect of aqueous phase recirculation on characteristics of bio-crude oil formation during hydrothermal liquefaction of corn stalk

  • Corresponding author: YI Wei-ming, yiweiming@sdut.edu.cn
  • Received Date: 6 January 2020
    Revised Date: 11 February 2020

    Fund Project: The project was supported by National Natural Science Foundation of Shandong Province (ZR2017BEE049), National Natural Science Foundation of China (51706126, 31872400, 51536009) and SDUT & Zibo City Integration Project (2019ZBXC380)The project was supported by National Natural Science Foundation of Shandong Province ZR2017BEE049SDUT & Zibo City Integration Project 2019ZBXC380National Natural Science Foundation of China 31872400National Natural Science Foundation of China 51706126National Natural Science Foundation of China 51536009

Figures(6)

  • The corn stalk was used as the raw material and the deionized water was used as the medium to study the effect of aqueous phase recirculation on characteristics of bio-crude oil formation during hydrothermal liquefaction of corn stalk. No additional deionized water was added during the recirculation. The results show that the aqueous phase recirculation can enrich the concentration of organic acids in aqueous phase and promote the conversion of ketophenols, which can improve the yield and quality of bio-crude oil and solid products. Specifically, the aqueous phase recirculation has little effect on the pH value of the aqueous phase (3.62-3.91), but the organic acids such as acetic acid and propionic acid are continuously accumulated and the content of ketones and phenols is gradually reduced. Also, the yield of bio-crude oil is gradually increased from 20.42% to 24.31%, the quality of bio-crude oil is slightly improved, and the carbon content of the solid product is increased from 60.94% to 61.74%.
  • 加载中
    1. [1]

      SONG Chun-cai, HU Hao-quan. Thermochemical liquefaction of biomass in high pressure water[J]. J Sichuan Univ (Eng Sci Ed), 2002,34(5):59-62.  

    2. [2]

      WEI Hong-jian, YANG Qing, LI Jia-shuo, YANG Hai-ping, CHEN Han-ping. Analysis of spatiotemporal and density changes of crop straws resources in China[J]. Renewable Energy Resour, 2019,37(9):1265-1273.  

    3. [3]

      LIU Zhi-bin, ZHANG Xue-qin. Progress of lignocellulose biomass catalytic conversion to high added-value products[J]. J Cellul Sci Technol, 2019,27(3):77-82.  

    4. [4]

      JIANG Hong-tao, LI Hui-quan, ZHANG Yi. Progress in liquefaction of biomass to bio-crude[J]. Chem Ind Eng Prog, 2006,25(1):8-13.  

    5. [5]

      KLEMMER M, MADSEN R B, HOULBERG K, MØRUP A J, CHRISTENSEN P S, BECKER J, GLASIUS M, IVERSEN B B. Effect of aqueous phase recycling in continuous hydrothermal liquefaction[J]. Ind Eng Chem Res, 2016,55(48):12317-12325.  

    6. [6]

      QU Lei, CUI Xiang, YANG Hai-ping, WANG Xian-hua, ZHANG Wen-nan, SHAO Jing-ai, CHEN Han-ping. Review on the preparation of bio-oil by microalgae hydrothermal liquefaction[J]. Chem Ind Eng Prog, 2018,37(8):2962-2969.  

    7. [7]

      USMAN M, CHEN H, CHEN K, REN S, CLARK J H, FAN J, LUO G, ZHANG S. Characterization and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char production:A review[J]. Green Chem, 2019,21(7):1553-1572.  

    8. [8]

      PENG Wen-cai. Study on the process and mechanism of hydrothermal liquefaction of crop straws[D]. Shanghai: East China University of Science and Technology, 2011.

    9. [9]

      LI C, YANG X, ZHANG Z, ZHOU D, ZHANG L, ZHANG S, CHEN J. Hydrothermal liquefaction of desert shrub salix psammophila to high value-added chemicals and hydrochar with recycled processing water[J]. BioResources, 2013,8(2):2981-2997.  

    10. [10]

      ELLIOTT D C, BILLER P, ROSS A B, SCHMIDT A J, JONES S B. Hydrothermal liquefaction of biomass:Developments from batch to continuous process[J]. Bioresour Technol, 2015,178:147-156.  

    11. [11]

      LI Chang-jun. Hydrothermal conversion of desert shrub salix Psammophila to bio-oil and hydrochars[D]. Shanghai: Fudan University, 2013.

    12. [12]

      ZHU Z, ROSENDAHL L, TOOR S S, YU D, CHEN G. Hydrothermal liquefaction of barley straw to bio-crude oil:Effects of reaction temperature and aqueous phase recirculation[J]. Appl Energy, 2015,137:183-192.  

    13. [13]

      RAMOS-TERCERO E A, BERTUCCO A, BRILMAN D W F W. Process water recycle in hydrothermal liquefaction of microalgae to enhance bio-oil yield[J]. Energy Fuels, 2015,29(4):2422-2430.  

    14. [14]

      HU Y, FENG S, BASSI A, XU C C. Improvement in bio-crude yield and quality through co-liquefaction of algal biomass and sawdust in ethanol-water mixed solvent and recycling of the aqueous by-product as a reaction medium[J]. Energy Convers Manage, 2018,171:618-625.  

    15. [15]

      PANISKO E, WIETSMA T, LEMMON T, ALBRECHT K, HOWE D. Characterization of the aqueous fractions from hydrotreatment and hydrothermal liquefaction of lignocellulosic feedstocks[J]. Biomass Bioenergy, 2015,74:162-171.  

    16. [16]

      GB/T 2677.10-1995. Fibrous raw material determination of holocellulose[S].

    17. [17]

      VAN SOEST P J, ROBERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. J Dairy Sci, 1991,74(10):3583-3597.  

    18. [18]

      LI Yan-mei, BAI Xue-yuan, YI Wei-ming. GC-MS analysis of main chemical components for bio-oil from three different biomass materials[J]. Shandong Sci, 2016,29(1):56-61.  

    19. [19]

      YIN S, TAN Z. Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions[J]. Appl Energy, 2012,92:234-239.  

    20. [20]

      CHEN H, HE Z, ZHANG B, FENG H, KANDASAMY S, WANG B. Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of spirulina platensis, α-cellulose, and lignin[J]. Energy, 2019,179:1103-1113. doi: 10.1016/j.energy.2019.04.184

    21. [21]

      GAO Ying, CHEN Han-ping, WANG Jun, SHI Tao, YANG Hai-ping. Characterization of products from hydrothermal liquefaction and carbonation of biomass model compounds and real biomass[J]. J Fuel Chem Technol, 2011, 39(12):893-900.

    22. [22]

      ROSS A, JONES J, KUBACKI M, BRIDGEMAN T. Classification of macroalgae as fuel and its thermochemical behaviour[J]. Bioresour Technol, 2008,99(14):6494-6504.  

    23. [23]

      HU Y, FENG S, YUAN Z, XU C C, BASSI A. Investigation of aqueous phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae[J]. Bioresour Technol, 2017,239:151-159.  

    24. [24]

      ZHU Zhe. Study on hydrothermal liquefaction of biomass for bio-crude production and product characterization[D]. Tianjin: Tianjin University, 2014.

    25. [25]

      HU Jian-bo, DU Ze-xue, MIN En-ze. Progress in research of reaction mechanism concerning hydrothermal liquefaction of biomass[J]. Pet Process Petrochem, 2012,43(4):87-92.  

    26. [26]

      ROSS A B, BILLER P, KUBACKI M L, LI H, LEA-LANGTON A, JONES J M. Hydrothermal processing of microalgae using alkali and organic acids[J]. Fuel, 2010,89(9):2234-2243.  

    27. [27]

      XU D, SAVAGE P E. Characterization of biocrudes recovered with and without solvent after hydrothermal liquefaction of algae[J]. Algal Res, 2014,6:1-7.  

    28. [28]

      ZHU Z, SI B, LU J, WATSON J, ZHANG Y, LIU Z. Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk[J]. Bioresour Technol, 2017,243:9-16.  

    29. [29]

      LI Run-dong, ZHANG Yang, LI Bing-suo, LIU He-xin, KAI Xing-ping, YAN Zheng, YANG Tian-hua. Hydrothermal catalytic liquefaction of corn stalk for preparation of bio-oil[J]. 2016, 44(1): 69-75.

    30. [30]

      TIAN Chun-yan. Characteristics of eutrophicated algae and biocrude oil production through hydrothermal liquefaction[D]. Beijing: China Agricultural University, 2015.

  • 加载中
    1. [1]

      Jin ZHANGYuting WANGBin YUYuxin ZHONGYufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028

    2. [2]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    3. [3]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    4. [4]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    5. [5]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    10. [10]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    11. [11]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    12. [12]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    13. [13]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    14. [14]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    18. [18]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    19. [19]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    20. [20]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

Metrics
  • PDF Downloads(5)
  • Abstract views(882)
  • HTML views(176)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return