Citation: WANG Hui-min, MA Yan-ping, CHEN Xi-ying, XU Si-yuan, CHEN Jin-ding, ZHANG Qiu-lin, ZHAO Bin, NING Ping. Promoting effect of SO42- functionalization on the performance of Fe2O3 catalyst in the selective catalytic reduction of NOx with NH3[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(5): 584-593. shu

Promoting effect of SO42- functionalization on the performance of Fe2O3 catalyst in the selective catalytic reduction of NOx with NH3

  • Corresponding author: ZHANG Qiu-lin, qiulinzhang.kmust@163.com ZHAO Bin, 2859981152@qq.com
  • Received Date: 13 January 2020
    Revised Date: 22 April 2020

    Fund Project: Analysis and Testing Center of Kunming University of Science and Technology 2019M20182207001The project was supported by the National Natural Science Foundation of China (21666014) and Analysis and Testing Center of Kunming University of Science and Technology (2019M20182207001)the National Natural Science Foundation of China 21666014

Figures(10)

  • Fe(OH)3 and Fe2O3 were first prepared by a precipitation method and then sulfated to obtain the SO42--functionalized SO42-/Fe(OH)3 and SO42-/Fe2O3 catalysts for the selective catalytic reduction of NOx with NH3 (NH3-SCR); the promoting effect of SO42- functionalization on the performance of Fe2O3 catalyst in NH3-SCR was then investigated. The results indicate that the SCR activity of the SO42--functionalized Fe2O3 catalysts is significantly improved in comparison with that of unmodified Fe2O3. In particular, the SO42-/Fe(OH)3 catalyst exhibits excellent performance in NH3-SCR, with the NOx conversion of over 80% at 250-450 ℃; besides, it also display high catalytic stability and resistance towards H2O + SO2. A series of characterization results including XRD, Raman spectroscopy, TG analysis, FT-IR spectroscopy, H2-TPR, NH3-TPD and in situ DRIFTS reveal that the functionalization with sulfuric acid can inhibit the growth of Fe2O3 grains; moreover, SO42- combines with Fe3+ to form the sulfate complex, leading to an increase in the number of surface acid sites and the acid strength, which can inhibit the ammonia over-oxidation on Fe2O3 and enhance the deNOx performance of Fe2O3.
  • 加载中
    1. [1]

      SUN C Z, LIU H, CHEN W, CHEN D Z, YU S H, LIU A N, DONG L, FENG S. Insights into the Sm/Zr co-doping effects on N2 selectivity and SO2 resistance of a MnOx-TiO2 catalyst for the NH3-SCR reaction[J]. Chem Eng J, 2018,347:27-40.  

    2. [2]

      LIU Z M, SU H, LI J H, LI Y. Novel MoO3/CeO2-ZrO2 catalyst for the selective catalytic reduction of NOx by NH3[J]. Catal Commun, 2015,65:51-54.  

    3. [3]

      MARBERGERA A, FERRI D, ELSENER M, SAGAR A, ARTNER C, SCHERMANZ K, KROCHER O. Relationship between structures and activities of supported metal vanadates for the selective catalytic reduction of NO by NH3[J]. Appl Catal B:Environ, 2017,218:731-742.  

    4. [4]

      YAN Chun-di, CHENG Hao, WANG Shu-dong. Effects of copper content in Cu-SAPO-34 on its catalytic performance in NH3-SCR of NOx[J]. J Fuel Chem Technol, 2014,42(6):743-750.  

    5. [5]

      PUTLURU S S R, SCHILL L, GODIKSEN A, POREDDY R, MOSSIN S, JENSEN A D, FEHRMANN R. Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl Catal B:Environ, 2016,183:282-290.  

    6. [6]

      YANG Y J, LIU J, LIU F, WANG Z, DING J Y, HUANG H. Reaction mechanism for NH3-SCR of NOx over CuMn2O4 catalyst[J]. Chem Eng J, 2019,361:578-587.  

    7. [7]

      YAO X J, KONG T T, CHEN L, DING S M, YANG F M, DONG L. Enhanced low-temperature NH3-SCR performance of MnOx/CeO2 catalysts by optimal solvent effect[J]. Appl Surf Sci, 2017,420:407-415.  

    8. [8]

      ZHANG T, CHANG H Z, LI K Z, PENG Y, LI X, LI J H. Different exposed facets VOx/CeO2 catalysts for the selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2018,349:184-191.  

    9. [9]

      ANDREOLI S, DEORSOLA F A, PIRONE R. MnOx-CeO2 catalysts synthesized by solution combustion synthesis for the low-temperature NH3-SCR[J]. Catal Today, 2015,253:199-206.  

    10. [10]

      LIU Xin, NING Ping, LI Hao, SONG Zhong-xian, WANG Yan-cai, ZHANG Jin-hui, TANG Xiao-su, WANG Ming-zhi, ZHANG Qiu-lin. Probing NH3-SCR catalytic activity and SO2 resistance over aqueous-phase synthesized Ce-W@TiO2 catalyst[J]. J Fuel Chem Technol, 2016,44(2):225-231.  

    11. [11]

      KANG L, HAN L P, HE J B, LI H R, YAN T T, CHEN G R, ZHANG J P, SHI L Y, ZHANG D S. Improved NOx reduction in the presence of SO2 by using Fe2O3-promoted halloysite-supported CeO2-WO3 catalysts[J]. Environ Sci Technol, 2019,53:938-945.  

    12. [12]

      YE D, REN X Y, QU R Y, LIU S J, ZHENG C H, GAO X. Designing SO2-resistant cerium-based catalyst by modifying with Fe2O3 for the selective catalytic reduction of NO with NH3[J]. Mol Catal, 2019,462:10-18.  

    13. [13]

      LIU Z M, SU H, CHEN B C, LI J H, WOO S I. Activity enhancement of WO3 modified Fe2O3 catalyst for the selective catalytic reduction of NOx by NH3[J]. Chem Eng J, 2016,299:255-262.  

    14. [14]

      XIONG Z B, NING X, ZHOU F, YANG B, TU Y W, JIN J, LU W, LIU Z H. Environment-friendly magnetic Fe-Ce-W catalyst for the selective catalytic reduction of NOx with NH3:Influence of citric acid content on its activity-structure relationship[J]. RSC Adv, 2018,8:21915-21925.  

    15. [15]

      WANG Ji-feng, WANG Hui-min, ZHANG Ya-qing, ZHANG Qiu-lin, NING Ping. Promotion effect of tungsten addition on N2 selectivity of MnOx-Fe2O3 for NH3-SCR[J]. J Fuel Chem Technol, 2019,47(7):814-822.  

    16. [16]

      SHAN W P, LIU F D, HE H, SHI X Y, ZHANG C B. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B:Environ, 2012,115/116:100-106.  

    17. [17]

      LIU Z M, ZHANG S X, LI J H, MA L L. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS[J]. Appl Catal B:Environ, 2014,144:90-95.  

    18. [18]

      CHENG K, LIU B, SONG W Y, LIU J, CHEN Y S, ZHAO Z, WEI Y C. Effect of Nb promoter on the structure and performance of iron titanate catalysts for the selective catalytic reduction of NO with NH3[J]. Ind Eng Chem Res, 2018,57(23):7802-7810.  

    19. [19]

      ZEB F, ISHAQUE M, NADEEM K, KAMRAN M, KRENN H, SZABO D V, BROSSMANN U, LETOFSKY-PAPST I. Reduced surface effects in weakly interacting ZrO2 coated MnFe2O4 nanoparticles[J]. J Magn Magn Mater, 2019,469:580-586.  

    20. [20]

      NIU Ru-jie, WANG Cheng-zhang, LIU Xiao-yue, YI Chun-xiong, CHEN Liang, MI Tie, WU Zheng-shun. Preparation of Zr-based perovskite supported Fe2O3 catalyst and its performance in the reverse water gas shift reaction[J]. J Fuel Chem Technol, 2019,47(3):92-97.  

    21. [21]

      MANSOUR H, BARGOUGUI R, AUTRET-LAMBERT C, GADRI A, AMMAR S. Co-precipitation synthesis and characterization of tin-doped α-Fe2O3 nanoparticles with enhanced photocatalytic activities[J]. J Phys Chem Solids, 2018,114:1-7.  

    22. [22]

      GUO S, WANG H J, YANG W, FIDA H, YOU L M, ZHOU K. Scalable synthesis of Ca-doped α-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation[J]. Appl Catal B:Environ, 2020,262:118250-118261.  

    23. [23]

      SONG L Y, CHAO J D, FANG Y J, HE H, LI J, QIU W G, ZHANG G Z. Promotion of ceria for decomposition of ammonia bisulfate over V2O5-MoO3/TiO2 catalyst for selective catalytic reduction[J]. Chem Eng J, 2016,303:275-281.  

    24. [24]

      GAO S, CHEN X B, WANG H Q, MO J S, WU Z B, LIU Y, WENG X L. Ceria supported on sulfated zirconia as a superacid catalyst for selective catalytic reduction of NO with NH3[J]. J Colloid Interface Sci, 2013,394:515-521.  

    25. [25]

      CHANG H Z, MA L L, YANG S J, LI J H, CHEN L, WANG W, HAO J M. Comparison of preparation methods for ceria catalyst and the effect of surface and bulk sulfates on its activity toward NH3-SCR[J]. J Hazard Mater, 2013,262:782-788.  

    26. [26]

      QU R Y, GAO X, CEN K F, LI J H. Relationship between structure and performance of a novelcerium-niobium binary oxide catalyst for selective catalytic reduction of NO with NH3[J]. Appl Catal B:Environ, 2013,142-143:290-297.  

    27. [27]

      ZIC M, RISTIC M, MUSIC S. 57Fe Mössbauer, FT-IR and FE SEM investigation of the formation of hematite and goethite at high pH values[J]. J Mol Struct, 2007,834/836:141-149.  

    28. [28]

      YAN Z X, XU Z H, YANG Z H, YUE L, HUANG L Y. Graphene oxide/Fe2O3 nanoplates supported Pt for enhanced room-temperature oxidation of formaldehyde[J]. Appl Surf Sci, 2019,467/468:277-285.  

    29. [29]

      YAMAGUCHI T, JIN T, ISHIDA I, TANABE K. Structural identification of acid sites of sulfur-promoted solid super acid and construction of its structure on silica support[J]. Mater Chem Phys, 1986,17(1/2):3-19.  

    30. [30]

      KAYO A, YAMAGUCHI T, TANABE K. The effect of preparation method on the acidic and catalytic properties of iron oxide[J]. J Catal, 1983,83(1):99-106.  

    31. [31]

      ZIELINSKI J, ZGLINICKA I, ZNAK L, KASZKUR Z. Reduction of Fe2O3 with hydrogen[J]. Appl Catal A:Gen, 2010,381(1/2):191-196.  

    32. [32]

      LI H J, SONG H L, CHEN L W, XIA C G. Designed SO42-/Fe2O3-SiO2 solid acids for polyoxymethylene dimethyl ethers synthesis:the acid sites control and reaction pathways[J]. Appl Catal B:Environ, 2015,165:466-476.  

    33. [33]

      MENG D M, XU Y, GUO Y L, GUO Y, WANG L L, LU G Z, ZHAN W C. Spinel structured CoaMnbOx mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B:Environ, 2018,221:652-663.  

    34. [34]

      WANG X X, SHI Y, LI S J, LI W. Promotional synergistic effect of Cu and Nb doping on a novel Cu/Ti-Nb ternary oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B:Environ, 2018,220:234-250.  

    35. [35]

      MU J C, LI X Y, SUN W B, FAN S Y, WANG X Y, WANG L, QIN M C, GAN G Q, YIN Z F, ZHANG D K. Inductive effect boosting catalytic performance of advanced Fe1-xVxOδ catalysts in low-temperature NH3 selective catalytic reduction:Insight into the Structure, Interaction, and Mechanisms[J]. ACS Catal, 2018,8:6760-6774.  

    36. [36]

      GAO C, SHI J W, FAN Z Y, WANG B R, WANG Y, HE C, WANG X B, LI J, NIU C M. "Fast SCR" reaction over Sm-modified MnOx-TiO2 for promoting reduction of NOx with NH3[J]. Appl Catal A:Gen, 2018,564:102-112.  

    37. [37]

      MA S B, ZHAO X Y, LI Y S, ZHANG T R, YUAN F L, NIU X Y, ZHU Y J. Effect of W on the acidity and redox performance of the Cu0.02Fe0.2WaTiOx (a=0.01, 0.02, 0.03) catalysts for NH3-SCR of NO[J]. Appl Catal B:Environ, 2019,248:226-238.  

    38. [38]

      GUO M Y, LIU Q L, ZHAO P P, HAN J F, LI X, HA Y, FU Z C, SONG C F, JI N, LIU C X, MA D G, LI Z G. Promotional effect of SO2 on Cr2O3 catalysts for the marine NH3-SCR reaction[J]. Chem Eng J, 2019,361:830-838.  

  • 加载中
    1. [1]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    6. [6]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    7. [7]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    8. [8]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    9. [9]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    10. [10]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    11. [11]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    15. [15]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    18. [18]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    20. [20]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

Metrics
  • PDF Downloads(12)
  • Abstract views(1229)
  • HTML views(233)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return