Citation: Wang Yanni, Feng Ailing, Xu Rong. Nano Metal Organic Frameworks and Their Application of Drug Delivery[J]. Chemistry, ;2019, 82(4): 291-298. shu

Nano Metal Organic Frameworks and Their Application of Drug Delivery

  • Corresponding author: Feng Ailing, ailing@mail.xjtu.edu.cn
  • Received Date: 29 November 2018
    Accepted Date: 25 December 2018

Figures(4)

  • Metal organic frameworks (MOFs) are coordination polymers formed by metal ions and polydentate organic ligands containing nitrogen and oxygen by self-assembly process, which have been widely applied in drug delivery systems due to their advantages such as large specific surface area and high porosity. Nano metal organic frameworks (NMOFs) materials have not only the properties of MOFs, but also the unique physical and chemical properties of nanomaterials. Taken into account their characteristics of high drug loading capacity, good targeting ability, versatile functionality and good biodegradability, NMOFs have become excellent nano-scale drug delivery systems. This article mainly featured recent research progress towards various preparation methods of NMOFs, including solvothermal method, reverse microemulsion method, and ultrasonic method. And the advantages and disadvantages of these methods were discussed respectively. Meanwhile, the characteristics of NMOFs used drug delivery systems and the load of different types of drugs are described in detail. Finally, the future of their main research direction is prospected, which include improving its biocompatibility, more effective surface functionalization, expanding the variety of biological NMOFs and their payload drugs. So that, NMOFs can be used in the treatment of more diseases.
  • 加载中
    1. [1]

      T Simon-Yarza, S Rojas, P Horcajada et al. Compr. Biomater., 2017, 4: 719~749.

    2. [2]

      N S Bobbitt, J Y Chen, R Q Snurr. J. Phys. Chem.C, 2016, 120(48): 27328~27341. 

    3. [3]

      J Zhou, G Tian, L Zeng et al. Adv. Healthc. Materc., 2018, 7(10): 1800022. 

    4. [4]

      R Medishetty, V Nalla, L Nemec et al. Adv. Mater., 2017, 29: 1605637. 

    5. [5]

      A Gheorghe, M A Tepaske, S Tanase. Inorg. Chem. Front., 2018, 5: 1512~1523.

    6. [6]

      Z Qi, Y Chen. Biosens. Bioelectron., 2017, 87: 236~241.

    7. [7]

      M X Wu, Y W Yang. Adv. Mater., 2017, 29(23): 1606134. 

    8. [8]

      T Lian, R J Ho. J. Pharm. Sci., 2001, 90(6): 667~680.

    9. [9]

      M Jones, J Leroux. Eur. J. Pharm. Biopharm., 1999, 48(2): 101~111. 

    10. [10]

      D S Kohane. Biotechnol. Bioeng., 2007, 96(2): 203~209. 

    11. [11]

      Y Y Cheng, Z H Xu, M L Ma et al. J. Pharm. Sci., 2008, 97(1): 123~143.

    12. [12]

       

    13. [13]

      J L C Rowsell, O M Yaghi. Micropor. Mesopor. Mater., 2004, 73(1): 3~14.

    14. [14]

      R J Della, D M Liu, W B Lin. Acc. Chem. Res., 2012, 44(10): 957~968.

    15. [15]

      W Z Sun, X S Zhai, L Zhao et al. J. Chem. Eng., 2016, 289: 59~64.

    16. [16]

      F Bigdeli, H Ghasempour, T A Azhdari et al. Ultrason. Sonochem., 2017, 37: 29~36.

    17. [17]

      C B He, D M Liu, W B Lin. Chem. Rev., 2015, 115(19): 11079~11108.

    18. [18]

      A Henschel, K Gedrich, R Kraehnert et al. Chem. Commun., 2008, 27(35): 4192~4194.

    19. [19]

      K M L Taylor-Pashow, J Della Rocca, Z G Xie et al. J. Am. Chem. Soc., 2009, 131(40): 14261~14263. 

    20. [20]

      S H Jhung, J H Lee, J W Yoon et al. Adv. Mater., 2010, 19(1): 121~124. 

    21. [21]

      A M Spokoyny, D Kim, A Sumrein et al. Chem. Soc. Rev., 2009, 38(5): 1218~1227. 

    22. [22]

      W Hatakeyama, T J Sanchez, M D Rowe et al. ACS. Appl. Mater. Inter., 2011, 3(5): 1502~1510. 

    23. [23]

      W J Rieter, K M L Taylor, H An et al. J. Am. Chem. Soc., 2006, 128(28): 9024~9025. 

    24. [24]

      S M Hu, H L Niu, L G Qiu et al. Inorg. Chem. Commun., 2012, 17(Complete): 147~150. 

    25. [25]

      P Horcajada, T Chalati, C Serre et al. Nature Mater., 2010, 9(2): 172~178. 

    26. [26]

      P Horcajada, C Serre, M Vallet-Regi et al. Angew. Chem. Int. Ed., 2006, 45(36): 5974~5978. 

    27. [27]

      C D R Dunn. Exp. Hematol., 1974, 2(3): 101~117. 

    28. [28]

      Z Hassan, C Nilssonl, M Hassan. Bone Marrow Transpl., 1998, 22(9): 913~918. 

    29. [29]

      A M Layre, R Gref, P Couvreur et al. France, PCT/FR2005/001398, 2006.

    30. [30]

      N Liee'dana, A Galve, C Rubio et al. ACS Appl. Mater. Inter., 2012, 4(9): 5016~5021. 

    31. [31]

      I Imaz, D Ruiz-Molina, J Hernando et al. Chem. Commun., 2010, 46(26): 4737~4739. 

    32. [32]

      W J Rieter, K M Pott, K M Taylor et al. J. Am. Chem. Soc., 2008, 130(35): 11584~11585. 

    33. [33]

      P Horcajada, C Serre, G Maurin et al. J. Am. Chem. Soc, 2008, 130(21): 6774~6780. 

    34. [34]

      A Jordan, P Wust, H Fähling et al. Int. J. Hyperthermia., 1993, 9(1): 51~68. 

    35. [35]

      A Figuerola, C R Di, L Manna et al. Pharmacol. Res., 2010, 62(2): 126~143. 

    36. [36]

      M R Lohe, K Gedrich, T Freudenberg et al. Chem. Commun., 2011, 47(11): 3075~3077. 

    37. [37]

      Z Y Gu, X P Yan. Angew. Chem.Int.Ed., 2010, 49(8): 1477~1480.

    38. [38]

      R Galvelis, B Slater, R Chaudret et al. CrystEngComm, 2013, 15(45): 9603~9612. 

    39. [39]

      S S Chui, S M Lo, J P Charmant et al. Science, 1999, 283(5405): 1148~1150. 

    40. [40]

      D Rankine, A H Avellaneda, R Matthew et al. Chem. Commun., 2012, 48(83): 10328~10330. 

    41. [41]

      M J Katz, Z J Brown, Y J Colón et al. Chem. Commun., 2013, 49(82): 9449~9451. 

    42. [42]

      A C McKinlay, R E Morris, P Horcajada et al. Angew. Chem. Int. Ed., 2010, 49(36): 6260~6266.

    43. [43]

      C Serre, F Millange, S Surblé et al. Angew. Chem.Int.Ed., 2004, 43(46): 6285~6289.

    44. [44]

      T Baati, L Njim, F Neffati et al. Chem. Sci., 2013, 4(4): 2651~2655.

    45. [45]

      T Chalati, P Horcajada, P Couvreur et al. Nanomedicine, 2011, 6(10): 1683~1695. 

    46. [46]

      X C Huang, Y Y Lin, J Zhang et al. Angew. Chem. Int. Ed., 2006, 45(10): 1557~1559.

    47. [47]

      K S Park, Z Ni, J Y Choi et al. PNAS, 2006, 103(27): 10186~10191.

    48. [48]

      J Jung, I H Lee, E Lee et al. Biomacromolecules, 2007, 8(11): 3401~3407.

    49. [49]

      J Zhuang, C H Kuo, L Y Chou et al. ACS Nano, 2014, 8(3): 2812~2819. 

    50. [50]

      J Gao, H W Gu, B Xu. Acc. Chem. Res., 2009, 42(8): 1097~1107.

    51. [51]

      C Y Sun, C Qin, X L Wang et al. Dalton Transac., 2012, 41(23): 6906~6909. 

    52. [52]

      F Shu, D J Lv, X L Song et al. RSC Adv., 2018, 8(12): 6581~6589.

    53. [53]

      F Ravar, E Saadat, M Gholami et al. J. Control. Release, 2016, 229: 10~22. 

    54. [54]

      S M Keltie, P A Gale, M E Light et al. J. Coordin. Chem., 2013, 66(17): 3058~3062.

    55. [55]

      M O'Keeffe. Chem. Soc. Rev., 2009, 38(5): 1215~1217. 

    56. [56]

      H L Li, M Eddaoudi, M O'Keeffe et al. Nature, 1999, 402(6759): 276~279

    57. [57]

       

    58. [58]

      X J Luo, J Peng, Y J Li. Eur. J. Pharmacol, 2011, 650(1): 1~7. 

    59. [59]

      J An, S J Geib, N L Rosi. J. Am. Chem. Soc., 2009, 131(24): 8376~8377. 

    60. [60]

      S R Miller, D Heurtaux, T Baati et al. Chem. Commun., 2010, 46(25): 4526~4528. 

    61. [61]

      R W Sun, M Zhang, D Li et al. Chem. Eur. J., 2016, 21(51): 18534~18538. 

    62. [62]

      H Su, F Sun, J Jia et al. Chem. Commun., 2015, 51(26): 5774~5777.

    63. [63]

      S J Tai, W Q Zhang, J S Zhang et al. Micropor. Mesopor. Mater., 2016, 220: 148~154. 

    64. [64]

      I L Abánades, S L Abánades, R S Forgan. Chem. Commun., 2018, 54(22): 1~4.

    65. [65]

      M Nazari, M Rubio-Martinez, G Tobias et al. Adv. Funct. Mater., 2016, 26(19): 3244~3249. 

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    5. [5]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    11. [11]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    12. [12]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    13. [13]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    14. [14]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    18. [18]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    19. [19]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    20. [20]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

Metrics
  • PDF Downloads(17)
  • Abstract views(1327)
  • HTML views(362)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return